全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

A Peptide Derived from Phage Display Library Exhibits Antibacterial Activity against E. coli and Pseudomonas aeruginosa

DOI: 10.1371/journal.pone.0056081

Full-Text   Cite this paper   Add to My Lib

Abstract:

Emergence of drug resistant strains to currently available antibiotics has resulted in the quest for novel antimicrobial agents. Antimicrobial peptides (AMPs) are receiving attention as alternatives to antibiotics. In this study, we used phage-display random peptide library to identify peptides binding to the cell surface of E. coli. The peptide with sequence RLLFRKIRRLKR (EC5) bound to the cell surface of E. coli and exhibited certain features common to AMPs and was rich in Arginine and Lysine residues. Antimicrobial activity of the peptide was tested in vitro by growth inhibition assays and the bacterial membrane permeabilization assay. The peptide was highly active against Gram-negative organisms and showed significant bactericidal activity against E. coli and P. aeruginosa resulting in a reduction of 5 log10 CFU/ml. In homologous plasma and platelets, incubation of EC5 with the bacteria resulted in significant reduction of E. coli and P. aeruginosa, compared to the peptide-free controls. The peptide was non-hemolytic and non-cytotoxic when tested on eukaryotic cells in culture. EC5 was able to permeabilize the outer membrane of E. coli and P. aeruginosa causing rapid depolarization of cytoplasmic membrane resulting in killing of the cells at 5 minutes of exposure. The secondary structure of the peptide showed a α-helical conformation in the presence of aqueous environment. The bacterial lipid interaction with the peptide was also investigated using Molecular Dynamic Simulations. Thus this study demonstrates that peptides identified to bind to bacterial cell surface through phage-display screening may additionally aid in identifying and developing novel antimicrobial peptides.

References

[1]  Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19: 491–511 19/3/491 [pii];10.1128/CMR.00056-05 [doi].
[2]  Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3: 710–720 10.1038/nri1180 [doi];nri1180 [pii].
[3]  Yeaman MR, Yount NY (2007) Unifying themes in host defence effector polypeptides. Nat Rev Microbiol 5: 727–740 nrmicro1744 [pii];10.1038/nrmicro1744 [doi].
[4]  Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci U S A 101: 7363–7368 10.1073/pnas.0401567101 [doi];0401567101 [pii].
[5]  Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206: 143–149 S0378109701004803 [pii].
[6]  Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235–7242 10.1021/bi9826299 [doi];bi9826299 [pii].
[7]  Zhang L, Rozek A, Hancock RE (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276: 35714–35722 10.1074/jbc.M104925200 [doi];M104925200 [pii].
[8]  Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55: 27–55 10.1124/pr.55.1.2 [doi].
[9]  Falla TJ, Karunaratne DN, Hancock RE (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271: 19298–19303.
[10]  Hancock RE, Falla T, Brown M (1995) Cationic bactericidal peptides. Adv Microb Physiol 37: 135–175.
[11]  Hadley EB, Hancock RE (2010) Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr Top Med Chem 10: 1872–1881 BSP/CTMC/E-Pub/-0081-10-15 [pii].
[12]  Lin KC, Chen CY, Chang CW, Huang KJ, Lin SP, et al. (2012) A dodecapeptide (YQVTQSKVMSHR) exhibits antibacterial effect and induces cell aggregation in Escherichia coli. Appl Microbiol Biotechnol 94: 755–762 10.1007/s00253-011-3857-3 [doi].
[13]  Loose C, Jensen K, Rigoutsos I, Stephanopoulos G (2006) A linguistic model for the rational design of antimicrobial peptides. Nature 443: 867–869 nature05233 [pii];10.1038/nature05233 [doi].
[14]  Mukhija S, Erni B (1997) Phage display selection of peptides against enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system (PTS). Mol Microbiol 25: 1159–1166.
[15]  Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131: 7609–7617 10.1021/ja8093247 [doi].
[16]  Rathinakumar R, Wimley WC (2010) High-throughput discovery of broad-spectrum peptide antibiotics. FASEB J 24: 3232–3238 fj.10-157040 [pii];10.1096/fj.10-157040 [doi].
[17]  Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37: D933–D937 gkn823 [pii];10.1093/nar/gkn823 [doi].
[18]  Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249: 404–406.
[19]  Fang ZD, Laskey JG, Huang S, Bilyeu KD, Morris RO, et al. (2006) Combinatorially selected defense peptides protect plant roots from pathogen infection. Proc Natl Acad Sci U S A 103: 18444–18449 0605542103 [pii];10.1073/pnas.0605542103 [doi].
[20]  Kay BK, Kasanov J, Yamabhai M (2001) Screening phage-displayed combinatorial peptide libraries. Methods 24: 240–246 10.1006/meth.2001.1185 [doi];S1046-2023(01)91185-5 [pii].
[21]  Kay BK, Castagnoli L (2003) Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries. Curr Protoc Cell Biol Chapter 17: Unit 10.1002/0471143030.cb1704s17 [doi].
[22]  Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, et al. (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49: 2665–2672 49/7/2665 [pii];10.1128/AAC.49.7.2665-2672.2005 [doi].
[23]  Sainath RS, Mohan KV, Nguyen N, Abraham B, Abdouleva G, et al. (2010) Peptides panned from a phage-displayed random peptide library are useful for the detection of Bacillus anthracis surrogates B. cereus 4342 and B. anthracis Sterne. Biochem Biophys Res Commun 395: 93–98 S0006-291X(10)00620-0 [pii];10.1016/j.bbrc.2010.03.145 [doi].
[24]  Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266: 383–402.
[25]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
[26]  Sainathrao S, Mohan KV, Atreya C (2009) Gamma-phage lysin PlyG sequence-based synthetic peptides coupled with Qdot-nanocrystals are useful for developing detection methods for Bacillus anthracis by using its surrogates, B. anthracis-Sterne and B. cereus-4342. BMC Biotechnol 9: 67 1472-6750-9-67 [pii];10.1186/1472-6750-9-67 [doi].
[27]  Chen CC, Hwang JK, Yang JM (2009) (PS)2-v2: template-based protein structure prediction server. BMC Bioinformatics 10: 366 1471-2105-10-366 [pii];10.1186/1471-2105-10-366 [doi].
[28]  Azad MA, Huttunen-Hennelly HE, Ross FC (2011) Bioactivity and the first transmission electron microscopy immunogold studies of short de novo-designed antimicrobial peptides. Antimicrob Agents Chemother 55: 2137–2145 AAC.01148-10 [pii];10.1128/AAC.01148-10 [doi].
[29]  Mohan KV, Rao SS, Atreya CD (2010) Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets. Transfusion 50: 166–173 TRF2376 [pii];10.1111/j.1537-2995.2009.02376.x [doi].
[30]  Pathak S, Chauhan VS (2011) Rationale-based, de novo design of dehydrophenylalanine-containing antibiotic peptides and systematic modification in sequence for enhanced potency. Antimicrob Agents Chemother 55: 2178–2188 AAC.01493-10 [pii];10.1128/AAC.01493-10 [doi].
[31]  Loh B, Grant C, Hancock RE (1984) Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 546–551.
[32]  Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13: 3315–3330.
[33]  Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32: W96–W99 10.1093/nar/gkh354 [doi];32/suppl_2/W96 [pii].
[34]  Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38: W445–W449 gkq311 [pii];10.1093/nar/gkq311 [doi].
[35]  Yount NY, Cohen SE, Kupferwasser D, Waring AJ, Ruchala P, et al. (2011) Context mediates antimicrobial efficacy of kinocidin congener peptide RP-1. PLoS One 6: e26727 10.1371/journal.pone.0026727 [doi];PONE-D-11-07188 [pii].
[36]  Wang P, Hu L, Liu G, Jiang N, Chen X, et al. (2011) Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One 6: e18476 10.1371/journal.pone.0018476 [doi].
[37]  Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41: 2254–2263 bi011549t [pii].
[38]  Tachi T, Epand RF, Epand RM, Matsuzaki K (2002) Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41: 10723–10731 bi0256983 [pii].
[39]  Daugelavicius R, Bakiene E, Bamford DH (2000) Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother 44: 2969–2978.
[40]  Hancock RE (1997) Peptide antibiotics. Lancet 349: 418–422 S0140-6736(97)80051-7 [pii];10.1016/S0140-6736(97)80051-7 [doi].
[41]  Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11: 37–51 nrd3591 [pii];10.1038/nrd3591 [doi].
[42]  Adey NB, Mataragnon AH, Rider JE, Carter JM, Kay BK (1995) Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene 156: 27–31 037811199500058E [pii].
[43]  Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W (2006) Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58: 1622–1654 S0169-409X(06)00182-7 [pii];10.1016/j.addr.2006.09.018 [doi].
[44]  Rao SS, Mohan KV, Gao Y, Atreya CD (2012) Identification and evaluation of a novel peptide binding to the cell surface of Staphylococcus aureus. Microbiol Res S0944-5013(12)00090-0 [pii];10.1016/j.micres.2012.07.004 [doi].
[45]  Bishop-Hurley SL, Mounter SA, Laskey J, Morris RO, Elder J, et al. (2002) Phage-displayed peptides as developmental agonists for Phytophthora capsici zoospores. Appl Environ Microbiol 68: 3315–3320.
[46]  Bishop-Hurley SL, Schmidt FJ, Erwin AL, Smith AL (2005) Peptides selected for binding to a virulent strain of Haemophilus influenzae by phage display are bactericidal. Antimicrob Agents Chemother 49: 2972–2978 49/7/2972 [pii];10.1128/AAC.49.7.2972-2978.2005 [doi].
[47]  Bishop-Hurley SL, Rea PJ, McSweeney CS (2010) Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial. Protein Eng Des Sel 23: 751–757 gzq050 [pii];10.1093/protein/gzq050 [doi].
[48]  Knurr J, Benedek O, Heslop J, Vinson RB, Boydston JA, et al. (2003) Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. Appl Environ Microbiol 69: 6841–6847.
[49]  Chen PW, Shyu CL, Mao FC (2003) Antibacterial activity of short hydrophobic and basic-rich peptides. Am J Vet Res 64: 1088–1092.
[50]  Jiang Z, Kullberg BJ, van der Lee H, Vasil AI, Hale JD, et al. (2008) Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Des 72: 483–495 JPP728 [pii];10.1111/j.1747-0285.2008.00728.x [doi].
[51]  Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, et al. (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90: 369–383 10.1002/bip.20911 [doi].
[52]  Jiang Z, Vasil AI, Hale J, Hancock RE, Vasil ML, et al. (2009) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Adv Exp Med Biol 611: 561–562.
[53]  Shepherd CM, Schaus KA, Vogel HJ, Juffer AH (2001) Molecular dynamics study of peptide-bilayer adsorption. Biophys J 80: 579–596 S0006-3495(01)76039-0 [pii];10.1016/S0006-3495(01)76039-0 [doi].
[54]  Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40: 1333–1341 CID35354 [pii];10.1086/429323 [doi].
[55]  Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, et al. (2008) Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother 52: 3229–3236 10.1128/AAC.00405-08 [doi];AAC.00405-08 [pii].
[56]  Velkov T, Thompson PE, Nation RL, Li J (2010) Structure–activity relationships of polymyxin antibiotics. J Med Chem 53: 1898–1916 10.1021/jm900999h [doi].
[57]  Rishi P, Preet S, Bharrhan S, Verma I (2011) In vitro and in vivo synergistic effects of cryptdin 2 and ampicillin against Salmonella. Antimicrob Agents Chemother 55: 4176–4182 AAC.00273-11 [pii];10.1128/AAC.00273-11 [doi].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133