Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment.
References
[1]
Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, et al. (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3: e3326.
[2]
Wolcott RD, Rhoads DD, Dowd SE (2008) Biofilms and chronic wound inflammation. J Wound Care 17: 333–341.
[3]
Ngo DK, Vickery K, Deva AK (2007) Effects of Combined Topical Negative Pressure (TNP) and Antiseptic Instillation on Pseudomonas Biofilm. ANZ J Surg 77: A66.
[4]
Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, et al. (2003) Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 36: 592–598.
[5]
Projan SJ, Youngman PJ (2002) Antimicrobials: new solutions badly needed. Current opinion in microbiology 5: 463–465.
[6]
Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, et al. (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17: 763–771.
[7]
Blair SE, Cokcetin NN, Harry EJ, Carter DA (2009) The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 28: 1199–1208.
[8]
Kwakman PH, de Boer L, Ruyter-Spira CP, Creemers-Molenaar T, Helsper JP, et al. (2011) Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 30: 251–257.
[9]
Henriques AF, Jenkins RE, Burton NF, Cooper RA (2010) The intracellular effects of manuka honey on Staphylococcus aureus. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 29: 45–50.
[10]
Maddocks SE, Lopez MS, Rowlands RS, Cooper RA (2012) Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology 158: 781–790.
[11]
Merckoll P, Jonassen TO, Vad ME, Jeansson SL, Melby KK (2009) Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria. Scandinavian journal of infectious diseases 41: 341–347.
[12]
Gannabathula S, Skinner MA, Rosendale D, Greenwood JM, Mutukumira AN, et al. (2012) Arabinogalactan proteins contribute to the immunostimulatory properties of New Zealand honeys. Immunopharmacology and immunotoxicology 34: 598–607.
[13]
Cooper R, Jenkins R (2012) Are there feasible prospects for manuka honey as an alternative to conventional antimicrobials? Expert Rev Anti Infect Ther 10: 623–625.
[14]
Allen KL, Molan PC, Reid GM (1991) A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 43: 817–822.
[15]
Kwakman PH, te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CM, et al. (2010) How honey kills bacteria. Faseb J 24: 2576–2582.
[16]
Kwakman PH, Zaat SA (2012) Antibacterial components of honey. IUBMB Life 64: 48–55.
[17]
Mavric E, Wittmann S, Barth G, Henle T (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52: 483–489.
[18]
Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MNC, et al. (2008) Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research 343: 651–659.
[19]
Stephens JM, Schlothauer RC, Morris BD, Yang D, Fearnley L, et al. (2010) Phenolic compounds and methylglyoxal in some New Zealand Manuka and Kanuka honeys. Food Chemistry 120: 78–86.
[20]
Majtan J, Klaudiny J, Bohova J, Kohutova L, Dzurova M, et al. (2012) Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: Possible therapeutic implications. Fitoterapia 83: 671–677.
[21]
Irish J, Blair S, Carter DA (2011) The antibacterial activity of honey derived from Australian flora. PLoS One 6: e18229.
[22]
Irish J, Carter DA, Shokohi T, Blair SE (2006) Honey has an antifungal effect against Candida species. Medical mycology : official publication of the International Society for Human and Animal Mycology 44: 289–291.
[23]
Kwakman PH, Te Velde AA, de Boer L, Vandenbroucke-Grauls CM, Zaat SA (2011) Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 6: e17709.
[24]
Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical biochemistry 253: 162–168.
[25]
Monahan LG, Robinson A, Harry EJ (2009) Lateral FtsZ association and the assembly of the cytokinetic Z ring in bacteria. Molecular Microbiology 74: 1004–1017.
[26]
Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533.
[27]
Setlow B, Magill N, Febbroriello P, Nakhimovsky L, Koppel DE, et al. (1991) Condensation of the forespore nucleoid early in sporulation of Bacillus species. Journal of bacteriology 173: 6270–6278.
[28]
Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Molecular Microbiology 80: 612–627.
[29]
Egyud LG, Szent-Gyorgyi A (1966) On the regulation of cell division. Proc Natl Acad Sci U S A 56: 203–207.
[30]
Cooper RA (1984) Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38: 49–68.
[31]
Ferguson GP, Totemeyer S, MacLean MJ, Booth IR (1998) Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170: 209–218.
[32]
Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27: 553–562.
[33]
Sukdeo N, Honek JF (2007) Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes. Biochim Biophys Acta 1774: 756–763.
[34]
Chien AC, Hill NS, Levin PA (2012) Cell size control in bacteria. Curr Biol 22: R340–349.
[35]
Britton RA, Lin DC, Grossman AD (1998) Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 12: 1254–1259.
[36]
Moriya S, Rashid RA, Rodrigues CD, Harry EJ (2010) Influence of the nucleoid and the early stages of DNA replication on positioning the division site in Bacillus subtilis. Molecular Microbiology 76: 634–647.
[37]
Fraval HN, McBrien DC (1980) The effect of methyl glyoxal on cell division and the synthesis of protein and DNA in synchronous and asynchronous cultures of Escherichia coli B/r. J Gen Microbiol 117: 127–134.
[38]
Brudzynski K, Abubaker K, Laurent M, Castle A (2011) Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front Microbiol 2: 213.
[39]
Silva-Rocha R, de Lorenzo V (2010) Noise and robustness in prokaryotic regulatory networks. Annu Rev Microbiol 64: 257–275.
[40]
Adams CJ, Manley-Harris M, Molan PC (2009) The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res 344: 1050–1053.
[41]
Lin SM, Molan PC, Cursons RT (2011) The controlled in vitro susceptibility of gastrointestinal pathogens to the antibacterial effect of manuka honey. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 30: 569–574.
[42]
Weston RJ (2000) The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chemistry 71: 235–239.
[43]
Molan P (2008) An explanation of why the MGO level in manuka honey does not show the antibacterial activity. New Zealand BeeKeeper 16: 11–13.
[44]
Chen C, Campbell LT, Blair SE, Carter DA (2012) The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Front Microbiol 3: 265.
[45]
Molan PC (1992) The antibacterial activity of honey: 2. Variation in the potency of the antibacterial activity. Bee World 73: 59–76.
[46]
Blair SE, Carter DA (2005) The potential for honey in the management of wounds and infection. Healthcare Infection 10: 24–31.
[47]
Kegels F (2011) Clinical Evaluation of Honey-based Products for Lower Extremity Wounds in A Home Care Settings. Wounds UK 7: 46–53.
[48]
Smaropoulos E, Romeos S, Dimitriadou C (2011) Honey-based therapy for paediatric burns and dermal trauma compared to standard hospital protocol. Wounds UK 7: 33–40.
[49]
Lee DS, Sinno S, Khachemoune A (2011) Honey and wound healing: an overview. American journal of clinical dermatology 12: 181–190.