全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches

DOI: 10.1371/journal.pone.0055969

Full-Text   Cite this paper   Add to My Lib

Abstract:

Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

References

[1]  Ebersole JS (1997) Defining epileptogenic foci: past, present, future. J Clin Neurophysiol 14: 470–483.
[2]  Ebersole JS (1997) Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia 38: S1–S5.
[3]  Noachtar S, Rémi J (2009) The role of EEG in epilepsy: a critical review. Epilepsy Behav 15: 22–33 doi:10.1016/j.yebeh.2009.02.035.
[4]  Lüders H, Awad I (1992) Conceptual Considerations. In: Lüders H, editor. Epilepsy Surgery. New York: Raven Press publishers. 51–62.
[5]  Chauvel P, Vignal J, Biraben A, Badier JM, Scarabin JM (1996) In:Pawlik G, Stefan H, editors. Multimethodological Assessment of the Epileptic Forms, chapter Stereoencephalography. New York: Springer Verlag. 80–108.
[6]  H?m?l?inen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography–theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65: 413–497 doi:10.1103/RevModPhys.65.413.
[7]  Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575: 925–936 doi:10.1113/jphysiol.2006.105379.
[8]  Knowlton RC, Shih J (2004) Magnetoencephalography in epilepsy. Epilepsia 45 Suppl 461–71 doi:10.1111/j.0013-9580.2004.04012.x.
[9]  Stefan H, Hummel C, Scheler G, Genow A, Druschky K, et al. (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126: 2396–2405 doi:10.1093/brain/awg239.
[10]  Placantonakis DG, Schwartz TH (2009) Localization in epilepsy. Neurol Clin 27: 1015–1030 doi:10.1016/j.ncl.2009.08.004.
[11]  Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional Differences in the Sensitivity of MEG for Interictal Spikes in Epilepsy. Brain Topogr 23: 159–164 doi:10.1007/s10548-010-0134-1.
[12]  Barth DS, Sutherling W, Engle J, Beatty J (1984) Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 223: 293–296.
[13]  Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, et al. (1997) Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy. Neuroimage 5: 298–306.
[14]  Oishi M, Otsubo H, Kameyama S, Morota N, Masuda H, et al. (2002) Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 43: 1390–1395.
[15]  Baillet S, Mosher JC (2001) and Richard M. Leahy. IEEE Signal Processing Magazine 1053.
[16]  Grova C, Daunizeau J, Lina JM, Benar CG, Benali H, et al. (2006) Evaluation of EEG localization methods using realistic simulations of interictal spikes. Neuroimage 29: 734–753.
[17]  Agirre-Arrizubieta Z, Huiskamp GJM, Ferrier CH, van Huffelen AC, Leijten FSS (2009) Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132: 3060–3071 doi:10.1093/brain/awp137.
[18]  Sutherling WW, Mamelak AN, Thyerlei D, Maleeva T, Minazad Y, et al. (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71: 990–996 doi:10.1212/01.wnl.0000326591.29858.1a.
[19]  Santiuste M, Nowak R, Russi A, Tarancon T, Oliver B, et al. (2008) Simultaneous magnetoencephalography and intracranial EEG registration: technical and clinical aspects. J Clin Neurophysiol 25: 331–339 doi:10.1097/WNP.0b013e31818e7913.
[20]  Genow A, Hummel C, Scheler G, Hopfeng?rtner R, Kaltenh?user M, et al. (2004) Epilepsy surgery, resection volume and MSI localization in lesional frontal lobe epilepsy. NeuroImage 21: 444–449 doi:10.1016/j.neuroimage.2003.08.029.
[21]  Dale A, Sereno M (1993) Improved localization of cortical activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction.
[22]  H?m?l?inen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Medical and Biological Engineering and Computing 32: 35–42.
[23]  Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology 18: 49–65.
[24]  Amblard C, Lapalme E, Lina J-M (2004) Biomagnetic Source Detection by Maximum Entropy and Graphical Models. IEEE Trans. Biomed. Eng. 51: 427–442 doi:10.1109/TBME.2003.820999.
[25]  Grova C, Daunizeau J, Kobayashi E, Bagshaw AP, Lina JM, et al. (2008) Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage 39: 755–774.
[26]  Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2006) Variational free energy and the Laplace approximation. NeuroImage 34: 220–234.
[27]  Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, et al. (2008) Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39: 1104–1120.
[28]  Lapalme E, Lina JM, Mattout J (2006) Data-driven parceling and entropic inference in MEG. NeuroImage 30: 160–171.
[29]  Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA (2004) Bayesian model averaging in EEG/MEG imaging. NeuroImage 21: 1300–1319.
[30]  Mattout J, Pélégrini-Issac M, Garnero L, Benali H (2005) Multivariate source prelocalization (MSP): Use of functionally informed basis functions for better conditioning the MEG inverse problem. NeuroImage 26: 356–373 doi:10.1016/j.neuroimage.2005.01.026.
[31]  Daunizeau J, Mattout J, Clonda D, Goulard B, Benali H, et al. (2006) Bayesian Spatio-Temporal Approach for EEG Source Reconstruction: Conciliating ECD and Distributed Models. IEEE Trans. Biomed. Eng. 53: 503–516 doi:10.1109/TBME.2005.869791.
[32]  Baune A, Sommer FT, Erb M, Wildgruber D, Kardatzki B, et al. (1999) Dynamical Cluster Analysis of Cortical fMRI Activation. NeuroImage 9: 477–489.
[33]  Thirion B, Faugeras O (2004) Feature characterization in fMRI data: the Information Bottleneck approach. Medical Image Analysis 8: 403–419 doi:10.1016/j.media.2004.09.001.
[34]  Bellec P, Rosa-Neto P, Lyttelton OC, Benali H, Evans AC (2010) Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51: 1126–1139 doi:10.1016/j.neuroimage.2010.02.082.
[35]  Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, et al. (2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 36: 69–87 doi:10.1016/j.neuroimage.2007.01.044.
[36]  Ou W, Nummenmaa A, Ahveninen J, Belliveau JW, H?m?l?inen MS, et al. (2010) Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. Neuroimage 52: 97–108 doi:10.1016/j.neuroimage.2010.03.001.
[37]  Harrison LM, Penny W, Ashburner J, Trujillo-Barreto N, Friston KJ (2007) Diffusion-based spatial priors for imaging. NeuroImage 38: 677–695.
[38]  LeSage JP, Kelley Pace R (2007) A matrix exponential spatial specification. Journal of Econometrics 140: 190–214 doi:10.1016/j.jeconom.2006.09.007.
[39]  Jaynes ET (1957) Information Theory and Statistical Mechanics. Phys. Rev. 106: 620–630 doi:10.1103/PhysRev.106.620.
[40]  Phillips C, Mattout J, Rugg MD, Maquet P, Friston KJ (2005) An empirical Bayesian solution to the source reconstruction problem in EEG. Neuroimage 24: 997–1011 doi:10.1016/j.neuroimage.2004.10.030.
[41]  Phillips C, Rugg MD, Friston KJ (2002) Systematic regularization of linear inverse solutions of the EEG source localization problem. NeuroImage 17: 287–301.
[42]  Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, et al. (2002) Classical and Bayesian Inference in Neuroimaging: Theory. NeuroImage 16: 465–483 doi:10.1006/nimg.2002.1090.
[43]  Henson RN, Flandin G, Friston KJ, Mattout J (2010) A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31: 1512–1531 doi:10.1002/hbm.20956.
[44]  Henson RN, Mattout J, Singh KD, Barnes GR, Hillebrand A, et al. (2007) Population-level inferences for distributed MEG source localization under multiple constraints: application to face-evoked fields. NeuroImage 38: 422–438.
[45]  Henson RN, Mattout J, Phillips C, Friston KJ (2009) Selecting forward models for MEG source-reconstruction using model-evidence. NeuroImage 46: 168–176.
[46]  Dorst L (2005) First order error propagation of the Procrustes method for 3D attitude estimation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27: 221–229 doi:10.1109/TPAMI.2005.29.
[47]  Mangin J-F, Frouin V, Bloch I, Régis J, López-Krahe J (1995) From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5: 297–318 doi:10.1007/BF01250286.
[48]  Kybic J, Clerc M, Faugeras O, Keriven R, Papadopoulo T (2006) Generalized head models for MEG/EEG: boundary element method beyond nested volumes. Physics in medicine and biology 51: 1333.
[49]  Bellec P, Dickinson P, Lerch JP, Zijdenbos AP, Evans AC (2012) The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows. Front. Neuroinform 6: 7 doi:10.3389/fninf.2012.00007.
[50]  Metz C (1986) ROC methodology in radiologic imaging. Invest. Radiol. 21: 720–732.
[51]  Otsu (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst., Man, Cybern. 9: 62–66 doi:10.1109/TSMC.1979.4310076.
[52]  Tao JX, Baldwin M, Hawes-Ebersole S, Ebersole JS (2007) Cortical Substrates of Scalp EEG Epileptiform Discharges. Journal of Clinical Neurophysiology 24: 96–100 doi:10.1097/WNP.0b013e31803ecdaf.
[53]  Cosandier-Rimélé D, Merlet I, Badier JM, Chauvel P, Wendling F (2008) The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy. NeuroImage 42: 135–146.
[54]  David O, Garnero L, Cosmelli D, Varela FJ (2002) Estimation of neural dynamics from MEG/EEG cortical current density maps: Application to the reconstruction of large-scale cortical synchrony. IEEE Transactions on Biomedical Engineering 49: 975–987.
[55]  Kincses WE, Braun C, Kaiser S, Elbert T (1999) Modeling extended sources of event-related potentials using anatomical and physiological constraints. Hum Brain Mapp 8: 182–193.
[56]  Limpiti T, Van Veen BD, Wakai RT (2006) Cortical patch basis model for spatially extended neural activity. IEEE Transactions on Biomedical Engineering 53: 1740–1754 doi:10.1109/TBME.2006.873743.
[57]  Cheyne D, Lerch J, Mohamed I, Ferrari P, Lalancette M, et al.. (2010) Realistic models of spatially extended cortical activity in MEG. Frontiers in Neuroscience 4. Available: http://www.frontiersin.org/Community/Abs?tractDetails.aspx?ABS_DOI=10.3389/conf.f?nins.2010.06.00390. Accessed 27 Nov 2011.
[58]  Birot G, Albera L, Wendling F, Merlet I (2011) Localization of extended brain sources from EEG/MEG: the ExSo-MUSIC approach. Neuroimage 56: 102–113 doi:10.1016/j.neuroimage.2011.01.054.
[59]  Bouet R, Jung J, Delpuech C, Ryvlin P, Isnard J, et al. (2012) Towards source volume estimation of interictal spikes in focal epilepsy using magnetoencephalography. NeuroImage 59: 3955–3966 doi:10.1016/j.neuroimage.2011.10.052.
[60]  Jerbi K, Mosher JC, Baillet S, Leahy RM (2002) On MEG forward modelling using multipolar expansions. Physics in Medicine and Biology 47: 523–555 doi:10.1088/0031–9155/47/4/301.
[61]  Kincses WE, Braun C, Kaiser S, Grodd W, Ackermann H, et al. (2003) Reconstruction of extended cortical sources for EEG and MEG based on a Monte-Carlo-Markov-chain estimator. Hum Brain Mapp 18: 100–110 doi:10.1002/hbm.10079.
[62]  Ding L (2009) Reconstructing cortical current density by exploring sparseness in the transform domain. Phys. Med. Biol. 54: 2683–2697 doi:10.1088/0031-9155/54/9/006.
[63]  Ahlfors SP, Han J, Lin F-H, Witzel T, Belliveau JW, et al.. (2009) Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum. Brain Mapp.: 140–149.
[64]  Attal Y, Bhattacharjee M, Yelnik J, Cottereau B, Lefèvre J, et al. (2007) Modeling and detecting deep brain activity with MEG & EEG. Conf Proc IEEE Eng Med Biol Soc 2007: 4937–4940 doi:10.1109/IEMBS.2007.4353448.
[65]  Lin F-H, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, et al. (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31: 160–171 doi:10.1016/j.neuroimage.2005.11.054.
[66]  Cottereau B, Jerbi K, Baillet S (2007) Multiresolution imaging of MEG cortical sources using an explicit piecewise model. Neuroimage 38: 439–451 doi:10.1016/j.neuroimage.2007.07.046.
[67]  Litvak V, Friston K (2008) Electromagnetic source reconstruction for group studies. Neuroimage 42: 1490–1498 doi:10.1016/j.neuroimage.2008.06.022.
[68]  Baillet S, Garnero L (1997) A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. Biomedical Engineering, IEEE Transactions on 44: 374–385.
[69]  Lin F-H, Belliveau JW, Dale AM, H?m?l?inen MS (2006) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27: 1–13 doi:10.1002/hbm.20155.
[70]  Cosandier-Rimélé D, Badier J-M, Chauvel P, Wendling F (2007) A physiologically plausible spatio-temporal model for EEG signals recorded with intracerebral electrodes in human partial epilepsy. IEEE Trans Biomed Eng 54: 380–388 doi:10.1109/TBME.2006.890489.
[71]  Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience 2011: 1–13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133