全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spin-Controlled Vertical-Cavity Surface-Emitting Lasers

DOI: 10.1155/2012/268949

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss the concept of spin-controlled vertical-cavity surface-emitting lasers (VCSELs) and analyze it with respect to potential room-temperature applications in spin-optoelectronic devices. Spin-optoelectronics is based on the optical selection rules as they provide a direct connection between the spin polarization of the recombining carriers and the circular polarization of the emitted photons. By means of optical excitation and numerical simulations we show that spin-controlled VCSELs promise to have superior properties to conventional devices such as threshold reduction, spin control of the emission, or even much faster dynamics. Possible concepts for room-temperature electrical spin injection without large external magnetic fields are summarized, and the progress on the field of purely electrically pumped spin-VCSELs is reviewed. 1. Introduction Concepts for the use of the electron spin as an information carrier have become an important research field called “spintronics.” The goal of spintronic research is to exploit the carrier spin degree of freedom additionally to the charge degree of freedom in order to develop novel devices, which offer new functionalities or a better performance as their conventional counterparts. Semiconductor spintronics in general includes the search for alternative device concepts as well as the investigation of the fundamental physical processes as spin injection, spin transport, spin manipulation, and spin detection. This research area was strongly stimulated by the suggestion of the so-called spin transistor by Datta and Das in 1990 [1]. Although such a spin transistor has yet to be realized even about 20 years after its suggestion, a lot of progress has been made in terms of understanding the above-mentioned fundamental physical processes. Moreover, new spintronic device concepts have been developed which might have a more realistic application perspective than the spin transistor. For example, spin-optoelectronic devices might be very promising. In such devices the direct connection between carrier spin momentum and photon spin momentum upon radiative recombination will be utilized in order to generate a spin-controlled net circular polarization degree for the light emission. While spin light-emitting diodes (spin-LEDs) are already established tools in order to characterize and optimize electrical spin injection [2–9], spin controlled semiconductor lasers (spin-lasers) seem to be more promising for mass applications. Spin-lasers might provide properties superior to those of their conventional counterparts. For

References

[1]  S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Applied Physics Letters, vol. 56, no. 7, pp. 665–667, 1990.
[2]  R. Flederling, M. Kelm, G. Reuscher et al., “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature, vol. 402, no. 6763, pp. 787–790, 1999.
[3]  Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure,” Nature, vol. 402, no. 6763, pp. 790–792, 1999.
[4]  H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Sch?nherr, and K. H. Ploog, “Room-temperature spin injection from Fe into GaAs,” Physical Review Letters, vol. 87, no. 1, Article ID 016601, 4 pages, 2001.
[5]  A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Applied Physics Letters, vol. 80, no. 7, pp. 1240–1242, 2002.
[6]  N. C. Gerhardt, S. H?vel, C. Brenner et al., “Electron spin injection into GaAs from ferromagnetic contacts in remanence,” Applied Physics Letters, vol. 87, no. 3, Article ID 32502, 3 pages, 2005.
[7]  C. Adelmann, X. Lou, J. Strand, C. J. Palmstr?m, and P. A. Crowell, “Spin injection and relaxation in ferromagnet-semiconductor heterostructures,” Physical Review B, vol. 71, no. 12, Article ID 121301, 4 pages, 2005.
[8]  X. Jiang, R. Wang, R. M. Shelby et al., “Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100),” Physical Review Letters, vol. 94, no. 5, Article ID 056601, 2005.
[9]  S. H?vel, N. C. Gerhardt, M. R. Hofmann et al., “Room temperature electrical spin injection in remanence,” Applied Physics Letters, vol. 93, no. 2, Article ID 021117, 2008.
[10]  S. Hallstein, J. D. Berger, M. Hilpert et al., “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Physical Review B, vol. 56, no. 12, pp. R7076–R7079, 1997.
[11]  M. Oestreich, J. Hübner, D. H?gele, et al., “Spintronics: spin electronics and optoelectronics in semiconductors,” in Advances in Solid State Physics, B. Kramer, Ed., pp. 173–186, Springer, Berlin, Germany, 2001.
[12]  D. Saha, D. Basu, and P. Bhattacharya, “High-frequency dynamics of spin-polarized carriers and photons in a laser,” Physical Review B, vol. 82, no. 20, Article ID 205309, 2010.
[13]  J. Lee, W. Falls, R. Oszwa?dowski, and I. ?uti?, “Spin modulation in semiconductor lasers,” Applied Physics Letters, vol. 97, no. 4, Article ID 041116, 2010.
[14]  M. Y. Li, H. J?hme, H. Soldat, N. C. Gerhardt, M. R. Hofmann, and T. Ackemann, “Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices,” Applied Physics Letters, vol. 97, no. 19, Article ID 191114, 2010.
[15]  J. Rudolph, D. H?gele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Applied Physics Letters, vol. 82, no. 25, pp. 4516–4518, 2003.
[16]  J. Rudolph, S. D?hrmann, D. H?gele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Applied Physics Letters, vol. 87, no. 24, Article ID 241117, pp. 1–3, 2005.
[17]  M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Physical Review Letters, vol. 98, no. 14, Article ID 146603, 2007.
[18]  I. Vurgaftman, M. Holub, B. T. Jonker, and J. R. Meyer, “Estimating threshold reduction for spin-injected semiconductor lasers,” Applied Physics Letters, vol. 93, no. 3, Article ID 031102, 2008.
[19]  D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Physical Review Letters, vol. 102, no. 9, Article ID 093904, 2009.
[20]  M. Holub and B. T. Jonker, “Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing,” Physical Review B, vol. 83, no. 12, Article ID 125309, 2011.
[21]  H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Applied Physics Letters, vol. 73, no. 5, pp. 566–568, 1998.
[22]  S. H?vel, N. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Spin controlled optically pumped vertical cavity surface emitting laser,” Electronics Letters, vol. 41, no. 5, pp. 251–253, 2005.
[23]  N. Gerhardt, S. H?vel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electronics Letters, vol. 42, no. 2, pp. 88–89, 2006.
[24]  M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” Journal of Physics D, vol. 40, no. 11, article R01, pp. R179–R203, 2007.
[25]  S. H?vel, A. Bischoff, N. C. Gerhardt et al., “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 92, no. 4, Article ID 041118, 2008.
[26]  S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Applied Physics Letters, vol. 98, no. 8, Article ID 81113, 2011.
[27]  I. ?uti?, J. Fabian, and S. D. Sarma, “Spintronics: fundamentals and applications,” Reviews of Modern Physics, vol. 76, no. 2, pp. 323–410, 2004.
[28]  M. Oestreich, M. Bender, J. Hübner et al., “Spin injection, spin transport and spin coherence,” Semiconductor Science and Technology, vol. 17, no. 4, pp. 285–297, 2002.
[29]  F. Meier and B. P. Zakharchenya, Optical Orientation. Modern Problems in Condensed Matter Sciences, vol. 8, North-Holland-Elsevier Science, New York, NY, USA, 1984.
[30]  R. J. Elliott, “Theory of the effect of spin-Orbit coupling on magnetic resonance in some semiconductors,” Physical Review, vol. 96, no. 2, pp. 266–279, 1954.
[31]  Y. Yafet, “Solid state physics,” in Advances in Research and Applications, F. Seitz and D. Turnbull, Eds., pp. 2–96, Academic Press, 1963.
[32]  M. I. D‘Yakonov and V. I. Perel, “Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory,” Soviet Physics, vol. 38, pp. 177–183, 1974.
[33]  G. Bir, A. Aronov, and G. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Physics, vol. 42, pp. 705–712, 1976.
[34]  M. Dyakonov, Spin Physics in Semiconductors, Springer, 2008.
[35]  R. I. Dzhioev, K. V. Kavokin, V. L. Korenev et al., “Low-temperature spin relaxation in n-type GaAs,” Physical Review B, vol. 66, no. 24, Article ID 245204, 7 pages, 2002.
[36]  A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, and T. Rasing, “Room-temperature ultrafast carrier and spin dynamics in GaAs probed by the photoinduced magneto-optical Kerr effect,” Physical Review B, vol. 63, no. 23, Article ID 235201, 8 pages, 2001.
[37]  A. Malinowski, R. S. Britton, T. Grevatt, R. T. Harley, D. A. Ritchie, and M. Y. Simmons, “Spin relaxation in GaAs/AlMxGa1-xAs quantum wells,” Physical Review B, vol. 62, no. 19, pp. 13034–13039, 2000.
[38]  J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. ?uti?, “Semiconductor spintronics,” Acta Physica Slovaca, vol. 57, no. 4-5, pp. 565–907, 2007.
[39]  D. J. Hilton and C. L. Tang, “Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs,” Physical Review Letters, vol. 89, no. 14, Article ID 146601, 4 pages, 2002.
[40]  M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Electrically injected spin-polarized vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 87, no. 9, Article ID 91108, pp. 1–3, 2005.
[41]  M. Ramsteiner, H. Y. Hao, A. Kawaharazuka et al., “Electrical spin injection from ferromagnetic MnAs metal layers into GaAs,” Physical Review B, vol. 66, no. 8, Article ID 081304, 4 pages, 2002.
[42]  S. Saikin, M. Shen, and M. C. Cheng, “Spin dynamics in a compound semiconductor spintronic structure with a Schottky barrier,” Journal of Physics Condensed Matter, vol. 18, no. 5, pp. 1535–1544, 2006.
[43]  H. Soldat, M. Li, N. C. Gerhardt et al., “Room temperature spin relaxation length in spin light-emitting diodes,” Applied Physics Letters, vol. 99, no. 5, Article ID 051102, 2011.
[44]  J. F. Gregg, I. Petej, E. Jouguelet, and C. Dennis, “Spin electronics—a review,” Journal of Physics D, vol. 35, no. 18, pp. R121–R155, 2002.
[45]  G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. Van Wees, “Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor,” Physical Review B, vol. 62, no. 8, pp. R4790–R4793, 2000.
[46]  E. I. Rashba, “Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem,” Physical Review B, vol. 62, no. 24, Article ID R16267, pp. R16267–R16270, 2000.
[47]  A. Fert and H. Jaffrès, “Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor,” Physical Review B, vol. 64, no. 18, Article ID 184420, 9 pages, 2001.
[48]  T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science, vol. 287, no. 5455, pp. 1019–1022, 2000.
[49]  M. L. Reed, N. A. El-Masry, H. H. Stadelmaier et al., “Room temperature ferromagnetic properties of (Ga, Mn)N,” Applied Physics Letters, vol. 79, no. 21, pp. 3473–3475, 2001.
[50]  M. Tanaka, “Ferromagnet (MnAs)/III-V semiconductor hybrid structures,” Semiconductor Science and Technology, vol. 17, no. 4, pp. 327–341, 2002.
[51]  H. Saito, S. Yamagata, and K. Ando, “Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1-xCrxTe,” Physical Review Letters, vol. 90, no. 20, Article ID 207202, 4 pages, 2003.
[52]  J. Philip, A. Punnoose, B. I. Kim et al., “Carrier-controlled ferromagnetism in transparent oxide semiconductors,” Nature Materials, vol. 5, no. 4, pp. 298–304, 2006.
[53]  G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, “Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2,” Japanese Journal of Applied Physics, vol. 39, no. 10 A, pp. L949–L951, 2000.
[54]  T. Dietl and H. Ohno, “Ferromagnetic III-V and II-VI semiconductors,” MRS Bulletin, vol. 28, no. 10, pp. 714–719, 2003.
[55]  T. Manago and H. Akinaga, “Spin-polarized light-emitting diode using metal/insulator/semiconductor structures,” Applied Physics Letters, vol. 81, no. 4, pp. 694–696, 2002.
[56]  N. C. Gerhardt, S. H?vel, C. Brenner et al., “Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts,” Journal of Applied Physics, vol. 99, no. 7, Article ID 073907, 2006.
[57]  E. Schuster, R. A. Brand, F. Stromberg et al., “Epitaxial growth and interfacial magnetism of spin aligner for remanent spin injection: [Fe/Tb]n /Fe/MgO/GaAs -light emitting diode as a prototype system,” Journal of Applied Physics, vol. 108, no. 6, Article ID 063902, 2010.
[58]  A. Ludwig, R. Roescu, A. K. Rai et al., “Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications,” Journal of Crystal Growth, vol. 323, no. 1, pp. 376–379, 2011.
[59]  A. Sinsarp, T. Manago, F. Takano, and H. Akinaga, “Electrical spin injection from out-of-plane magnetized FePt/MgO tunneling junction into GaAs at room temperature,” Japanese Journal of Applied Physics Part 2, vol. 46, no. 1–3, pp. L4–L6, 2007.
[60]  L. Grenet, M. Jamet, P. Nó et al., “Spin injection in silicon at zero magnetic field,” Applied Physics Letters, vol. 94, no. 3, Article ID 032502, 2009.
[61]  O. M. J. Van't Erve, G. Kioseoglou, A. T. Hanbicki, C. H. Li, and B. T. Jonker, “Remanent electrical spin injection from Fe into AIGaAs/GaAs light emitting diodes,” Applied Physics Letters, vol. 89, no. 7, Article ID 072505, 2006.
[62]  M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE Journal of Quantum Electronics, vol. 45, no. 6, pp. 744–749, 2009.
[63]  R. Oszwa?dowski, C. G?thgen, and I. ?uti?, “Theory of quantum dot spin lasers,” Physical Review B, vol. 82, Article ID 85316, 2010.
[64]  M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Physical Review A, vol. 52, no. 2, pp. 1728–1739, 1995.
[65]  A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSEL's,” IEEE Journal of Quantum Electronics, vol. 35, no. 3, pp. 342–351, 1999.
[66]  J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 5, pp. 765–783, 1997.
[67]  C. G?thgen, R. Oszwadowski, A. Petrou, and I. ?uti?, “Analytical model of spin-polarized semiconductor lasers,” Applied Physics Letters, vol. 93, no. 4, Article ID 042513, 2008.
[68]  D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAsGaAs quantum dot spin laser operating at 200 K,” Applied Physics Letters, vol. 92, no. 9, Article ID 091119, 2008.
[69]  M. Travagnin, M. P. Van Exter, A. K. Jansen Van Doorn, and J. P. Woerdman, “Role of optical anisotropies in the polarization properties of surface-emitting semiconductor lasers,” Physical Review A, vol. 54, no. 2, pp. 1647–1660, 1996.
[70]  M. P. Van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Physical Review A, vol. 58, no. 5, pp. 4191–4205, 1998.
[71]  M. Sondermann, M. Weinkath, and T. Ackemann, “Polarization switching to the gain disfavored mode in vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 40, no. 2, pp. 97–104, 2004.
[72]  M. B. Willemsen, M. P. Van Exter, and J. P. Woerdman, “Anatomy of a polarization switch of a vertical-cavity semiconductor laser,” Physical Review Letters, vol. 84, no. 19, pp. 4337–4340, 2000.
[73]  E. L. Blansett, M. G. Raymer, G. Khitrova et al., “Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers,” Optics Express, vol. 9, no. 6, pp. 312–318, 2001.
[74]  T. Ackemann and M. Sondermann, “Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 78, no. 23, pp. 3574–3576, 2001.
[75]  R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photonics Journal, vol. 3, no. 5, pp. 799–809, 2011.
[76]  N. C. Gerhardt, M. Y. Li, H. J?hme, H. H?pfner, T. Ackemann, and M. R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 99, no. 15, Article ID 151107, 2011.
[77]  K. Panajotov, B. Nagler, G. Verschaffelt et al., “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 77, no. 11, pp. 1590–1592, 2000.
[78]  K. Ikeda, T. Fujimoto, H. Fujino, and T. Katayama, “Switching of lasing circular polarizations in a (110)-VCSEL,” IEEE Photonics Technology Letters, vol. 21, no. 18, pp. 1350–1352, 2009.
[79]  D. H?gele, M. Oestreich, M. Holub, and P. Bhattacharya, “Comment on “electrically injected spin-polarized vertical-cavity surface-emitting lasers” [Applied Physics Letters vol. 87, article 091108, 2005],” Applied Physics Letters, vol. 88, no. 5, Article ID 56101, p. 1, 2006.
[80]  M. Holub and P. Bhattacharya, “Response to Comment on “Electrically injected spin-polarized vertical-cavity surface-emitting lasers“ [Applied Physics Letters, vol. 87, article 091108, 2005],” Applied Physics Letters, vol. 88, no. 5, Article ID 56102, p. 1, 2006.
[81]  M. Holub, P. Bhattacharya, J. Shin, and D. Saha, “Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser,” Journal of Crystal Growth, vol. 301-302, pp. 602–606, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133