全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Laser Spectroscopic Investigations of Praseodymium I Transitions: New Energy Levels

DOI: 10.1155/2012/639126

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report the discovery of about 140 new energy levels of the neutral praseodymium atom, found by means of laser-induced fluorescence spectroscopy. Their energy has been determined with an uncertainty of 0.010 cm?1 using a wave number calibrated Fourier-transform spectrum. 1. Introduction This work is a continuation of our systematic investigation of the praseodymium atomic spectrum (Pr I) with the goals of a more complete knowledge of its energy level scheme and to widen the classification of its spectral lines. Praseodymium belongs to the rare earth elements, which have in common an open 4f electron shell. In nature one finds only one stable isotope, 141Pr59, with the electronic ground state [Xe]4f3??6s2, 4I°9/2 and nuclear spin quantum number I=5/2. Its nuclear magnetic dipole moment is [1], and its nuclear electric quadrupole moment Q=?0.0024b [2]. Due to the open 4f shell, Pr has a huge number of energy levels. This in turn leads to a very rich line spectrum. In 1978, the electronic levels discovered by several authors were collected and published, see [3]. Later, great progress was achieved by Ginibre [4–6]. She evaluated high resolution Fourier transform (FT) spectra, thereby discovering a large number of electronic levels of Pr I and Pr II and determined their parities, angular momenta, and hyperfine (hf) constants. Using an atomic-beam-magnetic resonance method, hf constants of many known low-lying metastable levels were determined with high accuracy by Childs and Goodman [7]. Investigation of the hf structure of Pr I lines was performed later by Kuwamoto et al. [8], Krzykowski et al. [9], and Furmann et al. [10]. Our group has been concerned with investigations of the hf structure of Pr I lines since 1999. First values of hf constants have been published in [11]. Later on we concentrated mainly on the discovery of unknown energy levels. Some of the results are published in [12–15]. The spectrum and level structure of the Pr atom are of astrophysical interest [16, 17] and of course are indispensable for a thorough theoretical description of the level scheme [11]. 2. Experimental Details Our investigations are based on a combination of laser-induced fluorescence (LIF) and Fourier-transform (FT) spectroscopy. Spectral lines of Pr were excited by laser light, generated by means of a tunable single-frequency dye laser system. Our source of free atoms was a dc hollow cathode discharge, which produced free Pr atoms by cathode sputtering. Due to the collision processes within the Ar plasma, also high-lying Pr levels are populated, thus the laser light

References

[1]  R. M. Macfarlane, D. P. Burum, and R. M. Shelby, “New determination of the nuclear magnetic moment of 141Pr,” Physical Review Letters, vol. 49, no. 9, pp. 636–639, 1982.
[2]  K. D. B?klen, T. Bossert, W. Foerster, H. H. Fuchs, and G. Nachtsheim, “Hyperfine structure measurements in the 4I9/2 ground state of 141Pr,” Zeitschrift für Physik A, vol. 274, no. 3, pp. 195–201, 1975.
[3]  W. C. Martin, R. Zalubas, and L. Hagan, Atomic Energy Levels—The Rare Earth Elements National Bureau of Standards, vol. 60, NSRDS-NBS, Washington, DC, USA, 1978.
[4]  A. Ginibre, “Fine and hyperfine structures in the configurations 4f25d6s2 and 4f25d26s of neutral praseodymium,” Physica Scripta, vol. 23, no. 3, p. 260, 1981.
[5]  A. Ginibre, “Classification et étude paramétrique des spectres complexes á l'aide de l'interprétation des structures hyperfines: spectres I et II du praséodyme,” [Ph.D. thesis], Université de Paris-Sud, Centre d’Orsay Paris, 1988.
[6]  A. Ginibre, “Fine and hyperfine structures of singly ionized praseodymium: I. energy levels, hyperfine structures and Zeeman effect, classified lines,” Physica Scripta, vol. 39, no. 6, p. 694, 1989.
[7]  W. J. Childs and L. S. Goodman, “Double resonance, fluorescence spectroscopy, and hyperfine structure in Pr I,” Physical Review A, vol. 24, no. 3, pp. 1342–1349, 1981.
[8]  T. Kuwamoto, I. Endo, A. Fukumi et al., “Systematic study of fine and hyperfine structures in Pr I by doppler-free atomic-beam laser spectroscopy,” Journal of the Physical Society of Japan, vol. 65, no. 10, pp. 3180–3185, 1996.
[9]  A. Krzykowski, B. Furmann, D. Stefánska, A. Jarosz, and A. Kajoch, “Hyperfine structures in the configuration 4f3 5d 6s of the praseodymium atom,” Optics Communications, vol. 140, no. 4–6, pp. 216–219, 1997.
[10]  B. Furmann, A. Krzykowski, D. Stefańska, and J. Dembczyński, “New levels and hyperfine structure evaluation in neutral praseodymium,” Physica Scripta, vol. 74, no. 6, pp. 658–669, 2006.
[11]  J. Ruczkowski, E. Stachowska, M. Elantkowska, G. H. Guth?hrlein, and J. Dembczyński, “Interpretation of the hyperfine structure of the even configuration system of Pr I,” Physica Scripta, vol. 68, no. 2, pp. 133–140, 2003.
[12]  B. Gamper, Z. Uddin, M. Jahangir et al., “Investigation of the hyperfine structure of Pr I and Pr II lines based on highly resolved Fourier transform spectra,” Journal of Physics B, vol. 44, no. 4, Article ID 045003, 2011.
[13]  K. Shamim, I. Siddiqui, and L. Windholz, “Experimental investigation of the hyperfine spectra of Pr I—clines: discovery of new fine structure levels with low angular momentum,” The European Physical Journal D, vol. 64, no. 2-3, pp. 209–220, 2011.
[14]  T. I. Syed, I. Siddiqui, K. Shamim, Z. Uddin, G. H. Guth?hrlein, and L. Windholz, “New even and odd parity levels of neutral praseodymium,” Physica Scripta, vol. 84, Article ID 065303, 2011.
[15]  U. Zaheer, S. Imran, S. Khan, B. Gamper, E. Abdul-Hafidh, and L. Windholz, “New levels of the Pr atom with almost similar energies,” Journal of Physical Science and Application, vol. 2, no. 4, pp. 88–94, 2012.
[16]  T. A. Ryabchikova, I. S. Savanov, V. P. Malanushenko, and D. O. Kudryavtsev, “A study of rare earth elements in the atmospheres of chemically peculiar stars. Pr III and Nd III lines,” Astronomy Reports, vol. 45, no. 5, pp. 382–388, 2001.
[17]  S. Ivarsson, U. Litzen, and G. M. Wahlgren, “Accurate wavelengths, oscillator strengths and hyperfine structure in selected praseodymium lines of astrophysical interest,” Physica Scripta, vol. 64, no. 5, p. 455, 2001.
[18]  G. R. Harrison, Wavelength Tables, Massachusetts Institute of Technology (M.I.T. Press), 1969.
[19]  Helmut-Schmidt-Universit?t, Universit?t der Bundeswehr Hamburg, and Laboratorium für Experimentalphysik, unpublished material taken from several diploma theses (supervisor G. H. Guth?hrlein).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133