Genome-Wide Analysis Using Exon Arrays Demonstrates an Important Role for Expression of Extra-Cellular Matrix, Fibrotic Control and Tissue Remodelling Genes in Dupuytren's Disease
Dupuytren's disease (DD) is a classic example of pathological fibrosis which results in a debilitating disorder affecting a large sector of the human population. It is characterized by excessive local proliferation of fibroblasts and over-production of collagen and other components of extracellular matrix (ECM) in the palmar fascia. The fibrosis progressively results in contracture of elements between the palmar fascia and skin causing flexion deformity or clawing of the fingers and a severe reduction in hand function. While much is known about the pathogenesis and surgical treatment of DD, little is known about the factors that cause its onset and progression, despite many years of research. Gene expression patterns in DD patients now offers the potential to identify genes that direct the pathogenesis of DD. In this study we used primary cultures of fibroblasts derived from excisional biopsies of fibrotic tissue from DD patients to compare the gene expression profiles on a genome-wide basis with normal control fibroblasts. Our investigations have identified genes that may be involved with DD pathogenesis including some which are directly relevant to fibrosis. In particular, these include significantly reduced expression levels of three matrix metallopeptidases (MMP1, MMP3, MMP16), follistatin, and STAT1, and significantly increased expression levels of fibroblast growth factors (FGF9, FGF11), a number of collagen genes and other ECM genes in DD patient samples. Many of these gene products are known to be involved in fibrosis, tumour formation and in the normal processes of tissue remodelling. In addition, alternative splicing was identified in some DD associated genes. These highly sensitive genomic investigations provide new insight into the molecular mechanisms that may underpin the development and progression of DD.
References
[1]
Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104: 1435–1458.
[2]
Bowley E, O'Gorman DB, Gan BS (2007) Beta-catenin signaling in fibroproliferative disease. J Surg Res 138: 141–150.
[3]
Rayan GM (2007) Dupuytren disease: Anatomy, pathology, presentation, and treatment. J Bone Joint Surg Am 89: 189–198.
Rayan GM (1999) Clinical presentation and types of Dupuytren's disease. Hand Clin 15: 87–96, vii.
[6]
Thurston AJ (2003) Dupuytren's disease. J Bone Joint Surg Br 85: 469–477.
[7]
Yi IS, Johnson G, Moneim MS (1999) Etiology of Dupuytren's disease. Hand Clin 15: 43–51, vi.
[8]
Murrell GA, Hueston JT (1990) Aetiology of Dupuytren's contracture. Aust N Z J Surg 60: 247–252.
[9]
Slattery D (2010) Review: Dupuytren's disease in Asia and the migration theory of Dupuytren's disease. ANZ J Surg 80: 495–499.
[10]
Burge P (1999) Genetics of Dupuytren's disease. Hand Clin 15: 63–71.
[11]
Gudmundsson KG, Arngrimsson R, Sigfusson N, Bjornsson A, Jonsson T (2000) Epidemiology of Dupuytren's disease: clinical, serological, and social assessment. The Reykjavik Study. J Clin Epidemiol 53: 291–296.
[12]
Ling RS (1963) The genetic factor in Dupuytren's disease. J Bone Joint Surg Br 45: 709–718.
[13]
Ross DC (1999) Epidemiology of Dupuytren's disease. Hand Clin 15: 53–62, vi.
[14]
Bocanegra TS, King P, Vasey FB, Germain BF, Espinoza LR (1981) Dupuytren's contracture: a genetically predisposed disorder? J Rheumatol 8: 1026–1027.
[15]
Anthony SG, Lozano-Calderon SA, Simmons BP, Jupiter JB (2008) Gender ratio of Dupuytren's disease in the modern U.S. population. Hand (N Y) 3: 87–90.
[16]
Al-Qattan MM (2006) Factors in the pathogenesis of Dupuytren's contracture. J Hand Surg Am 31: 1527–1534.
[17]
Townley WA, Baker R, Sheppard N, Grobbelaar AO (2006) Dupuytren's contracture unfolded. BMJ 332: 397–400.
[18]
Hueston JT (1963) Dupuytren's contnracture: Williams & Wilkins Co.
[19]
Hindocha S, McGrouther DA, Bayat A (2009) Epidemiological evaluation of Dupuytren's disease incidence and prevalence rates in relation to etiology. Hand (N Y) 4: 256–269.
[20]
van Rijssen AL, Gerbrandy FS, Ter Linden H, Klip H, Werker PM (2006) A comparison of the direct outcomes of percutaneous needle fasciotomy and limited fasciectomy for Dupuytren's disease: a 6-week follow-up study. J Hand Surg Am 31: 717–725.
[21]
van Rijssen AL, Werker PM (2006) Percutaneous needle fasciotomy in dupuytren's disease. J Hand Surg Br 31: 498–501.
[22]
Bainbridge C, Gerber RA, Szczypa PP, Smith T, Kushner H, et al. (2012) Efficacy of collagenase in patients who did and did not have previous hand surgery for Dupuytren's contracture. J Plast Surg Hand Surg.
[23]
Coleman S, Gilpin D, Tursi J, Kaufman G, Jones N, et al. (2012) Multiple concurrent collagenase clostridium histolyticum injections to dupuytren's cords: an exploratory study. BMC Musculoskelet Disord 13: 61.
[24]
Hurst LC, Badalamente MA, Hentz VR, Hotchkiss RN, Kaplan FT, et al. (2009) Injectable collagenase clostridium histolyticum for Dupuytren's contracture. N Engl J Med 361: 968–979.
[25]
Desai SS, Hentz VR (2011) The treatment of Dupuytren disease. J Hand Surg Am 36: 936–942.
[26]
Augoff K, Kula J, Gosk J, Rutowski R (2005) Epidermal growth factor in Dupuytren's disease. Plast Reconstr Surg 115: 128–133.
[27]
Bisson MA, McGrouther DA, Mudera V, Grobbelaar AO (2003) The different characteristics of Dupuytren's disease fibroblasts derived from either nodule or cord: expression of alpha-smooth muscle actin and the response to stimulation by TGF-beta1. J Hand Surg Br 28: 351–356.
[28]
Shih B, Watson S, Bayat A (2012) Whole genome and global expression profiling of Dupuytren's disease: systematic review of current findings and future perspectives. Ann Rheum Dis
[29]
Qian A, Meals RA, Rajfer J, Gonzalez-Cadavid NF (2004) Comparison of gene expression profiles between Peyronie's disease and Dupuytren's contracture. Urology 64: 399–404.
[30]
Forsman M, Paakkonen V, Tjaderhane L, Vuoristo J, Kallioinen L, et al. (2008) The expression of myoglobin and ROR2 protein in Dupuytren's disease. J Surg Res 146: 271–275.
[31]
Rehman S, Salway F, Stanley JK, Ollier WE, Day P, et al. (2008) Molecular phenotypic descriptors of Dupuytren's disease defined using informatics analysis of the transcriptome. J Hand Surg Am 33: 359–372.
[32]
Zhang AY, Fong KD, Pham H, Nacamuli RP, Longaker MT, et al. (2008) Gene expression analysis of Dupuytren's disease: the role of TGF-beta2. J Hand Surg Eur Vol 33: 783–790.
[33]
Johnston P, Chojnowski AJ, Davidson RK, Riley GP, Donell ST, et al. (2007) A complete expression profile of matrix-degrading metalloproteinases in Dupuytren's disease. J Hand Surg Am 32: 343–351.
[34]
Johnston P, Larson D, Clark IM, Chojnowski AJ (2008) Metalloproteinase gene expression correlates with clinical outcome in Dupuytren's disease. J Hand Surg Am 33: 1160–1167.
[35]
Lee LC, Zhang AY, Chong AK, Pham H, Longaker MT, et al. (2006) Expression of a novel gene, MafB, in Dupuytren's disease. J Hand Surg Am 31: 211–218.
[36]
Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, et al. (2009) Identification of biomarkers in Dupuytren's disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg Am 34: 124–136.
[37]
Satish L, LaFramboise WA, O'Gorman DB, Johnson S, Janto B, et al. (2008) Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture. BMC Med Genomics 1: 10.
[38]
Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1: 1349–1365.
[39]
Krause C, Kloen P, Ten Dijke P (2011) Elevated transforming growth factor beta and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts. Fibrogenesis Tissue Repair 4: 14.
[40]
Sgonc R, Wick G (2008) Pro- and anti-fibrotic effects of TGF-beta in scleroderma. Rheumatology (Oxford) 47 Suppl 5v5–7.
[41]
Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, et al. (2011) Wnt signaling and Dupuytren's disease. N Engl J Med 365: 307–317.
[42]
O'Gorman DB, Wu Y, Seney S, Zhu RD, Gan BS (2006) Wnt expression is not correlated with beta-catenin dysregulation in Dupuytren's Disease. J Negat Results Biomed 5: 13.
[43]
Satish L, Gallo PH, Baratz ME, Johnson S, Kathju S (2011) Reversal of TGF-beta1 stimulation of alpha-smooth muscle actin and extracellular matrix components by cyclic AMP in Dupuytren's-derived fibroblasts. BMC Musculoskelet Disord 12: 113.
[44]
Gilpin D, Coleman S, Hall S, Houston A, Karrasch J, et al. (2010) Injectable collagenase Clostridium histolyticum: a new nonsurgical treatment for Dupuytren's disease. J Hand Surg Am 35: 2027–2038 e2021.
[45]
Sprung CN, Chao M, Leong T, McKay MJ (2005) Chromosomal radiosensitivity in two cell lineages derived from clinically radiosensitive cancer patients. Clin Cancer Res 11: 6352–6358.
[46]
Bengtsson H, Simpson K, Bullard J, Hansen K (2006) Aroma. affymetris: A generic framework in R for analyaing small to very large Affymetrix data sets in bounded memory.: University of California, Berkeley. 745 745.
[47]
Pan D, Watson HK, Swigart C, Thomson JG, Honig SC, et al. (2003) Microarray gene analysis and expression profiles of Dupuytren's contracture. Ann Plast Surg 50: 618–622.
[48]
Chammas M, Bousquet P, Renard E, Poirier JL, Jaffiol C, et al. (1995) Dupuytren's disease, carpal tunnel syndrome, trigger finger, and diabetes mellitus. J Hand Surg Am 20: 109–114.
[49]
Ratkaj I, Bujak M, Jurisic D, Baus Loncar M, Bendelja K, et al. (2012) Microarray Analysis of Dupuytren's Disease Cells: The Profibrogenic Role of the TGF-beta Inducible p38 MAPK Pathway. Cell Physiol Biochem 30: 927–942.
[50]
Rehman S, Xu Y, Dunn WB, Day PJ, Westerhoff HV, et al. (2012) Dupuytren's disease metabolite analyses reveals alterations following initial short-term fibroblast culturing. Mol Biosyst
[51]
Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, et al. (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99: 12877–12882.
[52]
Bazin S, Le Lous M, Duance VC, Sims TJ, Bailey AJ, et al. (1980) Biochemistry and histology of the connective tissue of Dupuytren's disease lesions. Eur J Clin Invest 10: 9–16.
[53]
Murrell GA, Francis MJ, Bromley L (1987) Free radicals and Dupuytren's contracture. Br Med J (Clin Res Ed) 295: 1373–1375.
[54]
Murphy G, Cockett MI, Stephens PE, Smith BJ, Docherty AJ (1987) Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J 248: 265–268.
[55]
Rozen WM, Edirisinghe Y, Crock J (2012) Late Complications of Clinical Clostridium Histolyticum Collagenase Use in Dupuytren's Disease. PLoS ONE 7: e43406.
[56]
Pegorier S, Campbell GA, Kay AB, Lloyd CM (2010) Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res 11: 85.
[57]
Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, et al. (2006) The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 10: 397–405.
[58]
Noble J, Heathcote JG, Cohen H (1984) Diabetes mellitus in the aetiology of Dupuytren's disease. J Bone Joint Surg Br 66: 322–325.
[59]
Grootaert C, Van de Wiele T, Verstraete W, Bracke M, Vanhoecke B (2012) Angiopoietin-like protein 4: health effects, modulating agents and structure-function relationships. Expert Rev Proteomics 9: 181–199.
[60]
Akiyama SK (1996) Integrins in cell adhesion and signaling. Hum Cell 9: 181–186.
[61]
Patella S, Phillips DJ, Tchongue J, de Kretser DM, Sievert W (2006) Follistatin attenuates early liver fibrosis: effects on hepatic stellate cell activation and hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 290: G137–144.
[62]
Antsiferova M, Huber M, Meyer M, Piwko-Czuchra A, Ramadan T, et al. (2011) Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response. Nat Commun 2: 576.
[63]
Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y, et al. (2009) Activin signaling as an emerging target for therapeutic interventions. Cell Commun Signal 7: 15.
[64]
Aoki F, Kurabayashi M, Hasegawa Y, Kojima I (2005) Attenuation of bleomycin-induced pulmonary fibrosis by follistatin. Am J Respir Crit Care Med 172: 713–720.
[65]
Ludlow H, Phillips DJ, Myers M, McLachlan RI, de Kretser DM, et al. (2009) A new 'total' activin B enzyme-linked immunosorbent assay (ELISA): development and validation for human samples. Clin Endocrinol (Oxf) 71: 867–873.
[66]
Badalamente MA, Hurst LC, Grandia SK, Sampson SP (1992) Platelet-derived growth factor in Dupuytren's disease. J Hand Surg Am 17: 317–323.
[67]
Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R (1990) TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515–524.
[68]
Lawler J, McHenry K, Duquette M, Derick L (1995) Characterization of human thrombospondin-4. J Biol Chem 270: 2809–2814.
[69]
Sprung CN, Li J, Hovan D, McKay MJ, Forrester HB (2011) Alternative transcript initiation and splicing as a response to DNA damage. PLoS ONE 6: e25758.
[70]
Forrester HB, Li J, Hovan D, Ivashkevich AN, Sprung CN (2012) DNA repair genes: alternative transcription and gene expression at the exon level in response to the DNA damaging agent, ionizing radiation. PLoS ONE 7: e53358.