全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Proteasome Activity Influences UV-Mediated Subnuclear Localization Changes of NPM

DOI: 10.1371/journal.pone.0059096

Full-Text   Cite this paper   Add to My Lib

Abstract:

UV damage activates cellular stress signaling pathways, causes DNA helix distortions and inhibits transcription by RNA polymerases I and II. In particular, the nucleolus, which is the site of RNA polymerase I transcription and ribosome biogenesis, disintegrates following UV damage. The disintegration is characterized by reorganization of the subnucleolar structures and change of localization of many nucleolar proteins. Here we have queried the basis of localization change of nucleophosmin (NPM), a nucleolar granular component protein, which is increasingly detected in the nucleoplasm following UV radiation. Using photobleaching experiments of NPM-fluorescent fusion protein in live human cells we show that NPM mobility increases after UV damage. However, we show that the increase in NPM nucleoplasmic abundance after UV is independent of UV-activated cellular stress and DNA damage signaling pathways. Unexpectedly, we find that proteasome activity affects NPM redistribution. NPM nucleolar expression was maintained when the UV-treated cells were exposed to proteasome inhibitors or when the expression of proteasome subunits was inhibited using RNAi. However, there was no evidence of increased NPM turnover in the UV damaged cells, or that ubiquitin or ubiquitin recycling affected NPM localization. These findings suggest that proteasome activity couples to nucleolar protein localizations in UV damage stress.

References

[1]  Grummt I (2003) Life on a planet of its own: Regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17 1691–1702: 10.1101/gad.1098503R.
[2]  Russell J, Zomerdijk JC (2006) The RNA polymerase I transcription machinery. Biochem Soc Symp (73): 203–216.
[3]  Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14: 313–318.
[4]  Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: The rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64: 29–49 10.1007/s00018-006-6278-1.
[5]  Moss T (2004) At the crossroads of growth control; making ribosomal RNA. Curr Opin Genet Dev 14: 210–217 10.1016/j.gde.2004.02.005.
[6]  Leary DJ, Huang S (2001) Regulation of ribosome biogenesis within the nucleolus. FEBS Lett 509: 145–150.
[7]  Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI (2009) NOPdb: Nucleolar proteome database--2008 update. Nucleic Acids Res 37: D181–4 10.1093/nar/gkn804.
[8]  Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123 203–216: 10.1007/s00418–005-0754-9.
[9]  Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, et al. (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298: 1623–1626 10.1126/science.1076164.
[10]  Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077 10.1093/emboj/cdg579.
[11]  Olson MO (2004) Sensing cellular stress: Another new function for the nucleolus? Sci STKE 224: pe10 10.1126/stke.2242004pe10.
[12]  Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4: 1036–1038.
[13]  Stark LA, Taliansky M (2009) Old and new faces of the nucleolus. workshop on the nucleolus and disease. EMBO Rep 10: 35–40 10.1038/embor.2008.230.
[14]  Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3 10.1101/cshperspect.a000638.
[15]  Pederson T, Tsai RY (2009) In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184: 771–776 10.1083/jcb.200812014.
[16]  Lindstrom MS (2009) Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun 379: 167–170 10.1016/j.bbrc.2008.12.083.
[17]  Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, et al. (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465–475.
[18]  Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63: 88–102.
[19]  Herrlich P, Karin M, Weiss C (2008) Supreme EnLIGHTenment: Damage recognition and signaling in the mammalian UV response. Mol Cell 29: 279–290 10.1016/j.molcel.2008.01.001.
[20]  Zhang Y, Lu H (2009) Signaling to p53: Ribosomal proteins find their way. Cancer Cell 16: 369–377 10.1016/j.ccr.2009.09.024.
[21]  Shcherbik N, Pestov DG (2010) Ubiquitin and ubiquitin-like proteins in the nucleolus: Multitasking tools for a ribosome factory. Genes Cancer 1: 681–689 10.1177/1947601910381382.
[22]  Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, et al. (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10 M111.009241. 10.1074/mcp.M111.009241.
[23]  Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10: 755–764 10.1038/nrm2780.
[24]  Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78: 477–513 10.1146/annurev.biochem.78.081507.101607?.
[25]  Stavreva DA, Kawasaki M, Dundr M, Koberna K, Muller WG, et al. (2006) Potential roles for ubiquitin and the proteasome during ribosome biogenesis. Mol Cell Biol 26: 5131–5145 10.1128/MCB.02227-05.
[26]  Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, et al. (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285( 12416–12425 10.1074/jbc.M109.074211.
[27]  Latonen L, Moore HM, Bai B, Jaamaa S, Laiho M (2011) Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 30: 790–805 10.1038/onc.2010.469.
[28]  Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, et al. (2005) Nucleolar proteome dynamics. Nature 433: 77–83 10.1038/nature03207.
[29]  Fujii K, Kitabatake M, Sakata T, Miyata A, Ohno M (2009) A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes Dev 23: 963–974 10.1101/gad.1775609.
[30]  Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401 10.1038/338394a0.
[31]  Redman KL, Rechsteiner M (1989) Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338: 438–440 10.1038/338438a0.
[32]  Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L (2001) Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci U S A 98: 1012–1017 10.1073/pnas.031566998.
[33]  Arabi A, Rustum C, Hallberg E, Wright AP (2003) Accumulation of c-myc and proteasomes at the nucleoli of cells containing elevated c-myc protein levels. J Cell Sci 116: 1707–1717.
[34]  Scharf A, Rockel TD, von Mikecz A (2007) Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry. Histochem Cell Biol 127: 591–601 10.1007/s00418-006-0266-2.
[35]  Boyd MT, Vlatkovic N, Rubbi CP (2011) The nucleolus directly regulates p53 export and degradation. J Cell Biol 194: 689–703 10.1083/jcb.201105143.
[36]  Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, et al. (2009) Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci 122: 678–686 10.1242/jcs.044461.
[37]  Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153: 169–176.
[38]  Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, et al. (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16: 2395–2413 10.1091/mbc.E04-11-0992.
[39]  Latonen L, Laiho M (2005) Cellular UV damage responses--functions of tumor suppressor p53. Biochim Biophys Acta 1755: 71–89.
[40]  Cioce M, Boulon S, Matera AG, Lamond AI (2006) UV-induced fragmentation of cajal bodies. J Cell Biol 175: 401–413 10.1083/jcb.200604099.
[41]  Endo A, Kitamura N, Komada M (2009) Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284: 27918–27923 10.1074/jbc.M109.037218.
[42]  Huang M, Itahana K, Zhang Y, Mitchell BS (2009) Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin. Cancer Res 69: 3004–3012 10.1158/0008-5472.CAN-08-3413.
[43]  Lo D, Dai MS, Sun XX, Zeng SX, Lu H (2012) Ubiquitin- and MDM2 E3 ligase-independent proteasomal turnover of nucleostemin in response to GTP depletion. J Biol Chem 287: 10013–10020 10.1074/jbc.M111.335141.
[44]  Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, et al. (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 67: 9472–9481 10.1158/0008-5472.CAN-07-0568.
[45]  Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40: 216–227 10.1016/j.molcel.2010.09.024.
[46]  Melese T, Xue Z (1995) The nucleolus: An organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7: 319–324.
[47]  Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56: 379–390.
[48]  Louvet E, Junera HR, Le Panse S, Hernandez-Verdun D (2005) Dynamics and compartmentation of the nucleolar processing machinery. Exp Cell Res 304: 457–470 10.1016/j.yexcr.2004.11.018.
[49]  Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33: 275–286 10.1016/j.molcel.2009.01.014.
[50]  Bergink S, Jaspers NG, Vermeulen W (2007) Regulation of UV-induced DNA damage response by ubiquitylation. DNA Repair (Amst) 6: 1231–1242 10.1016/j.dnarep.2007.01.012.
[51]  Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, et al. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44: 325–340 10.1016/j.molcel.2011.08.025.
[52]  Boisvert FM, Ahmad Y, Gierlinski M, Charriere F, Lamont D, et al. (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11 M111.011429. 10.1074/mcp.M111.011429.
[53]  Warner JR (1977) In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J Mol Biol 115: 315–333.
[54]  Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17: 749–760 10.1016/j.cub.2007.03.064.
[55]  Colombo E, Alcalay M, Pelicci PG (2011) Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene 30: 2595–2609 10.1038/onc.2010.646; 10.1038/onc.2010.646.
[56]  Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, et al. (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5: 461–466 10.1038/ncb983.
[57]  Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, et al. (2004) Tumour suppression: Disruption of HAUSP gene stabilizes p53. Nature 428: 1 p following 486 10.1038/nature02501.
[58]  Bancaud A, Huet S, Rabut G, Ellenberg J (2010) Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb Protoc 2010 pdb.top90. 10.1101/pdb.top90.
[59]  Cornish T, Morgan J, Gurel B, De Marzo AM (2008) FrIDA: An open source framework for image dataset analysis. Arch Pathol Lab Med 132: 856.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133