全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ANP and BNP Responses to Dehydration in the One-Humped Camel and Effects of Blocking the Renin-Angiotensin System

DOI: 10.1371/journal.pone.0057806

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objectives of this study were to investigate and compare the responses of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in the circulation of hydrated, dehydrated, and dehydrated losartan - treated camels; and to document the cardiac storage form of B-type natriuretic peptide in the camel heart. Eighteen male camels were used in the study: control or hydrated camels (n = 6), dehydrated camels (n = 6) and dehydrated losartan-treated camels (n = 6) which were dehydrated and received the angiotensin II (Ang II) AT-1 receptor blocker, losartan, at a dose of 5 mg/kg body weight intravenously for 20 days. Control animals were supplied with feed and water ad-libitum while both dehydrated and dehydrated-losartan treated groups were supplied with feed ad-libitum but no water for 20 days. Compared with time-matched controls, dehydrated camels exhibited a significant decrease in plasma levels of both ANP and BNP. Losartan-treated camels also exhibited a significant decline in ANP and BNP levels across 20 days of dehydration but the changes were not different from those seen with dehydration alone. Size exclusion high performance liquid chromatography of extracts of camel heart indicated that proB-type natriuretic peptide is the storage form of the peptide. We conclude first, that dehydration in the camel induces vigorous decrements in circulating levels of ANP and BNP; second, blockade of the renin-angiotensin system has little or no modulatory effect on the ANP and BNP responses to dehydration; third, proB-type natriuretic peptide is the storage form of this hormone in the heart of the one-humped camel.

References

[1]  MacFarlane WV, Morris RJH, Howard B (1963) Turn-over and distribution of water in desert camels, sheep, cattle and kangaroos. Nature 197: 270–271.
[2]  Omland T, Hagve T-A (2009) Natriuretic peptides: physiologic and analytic considerations. Heart Failure Clin 5: 471–487.
[3]  Richards AM (1996) The renin-angiotensin-aldosterone system and the cardiac natriuretic peptides. HeartSupplement 3 76: 36–44.
[4]  Ali MA, Adem A, Chandranath IS, Benedict S, Pathan JY, et al. (2012) Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PloS One 7: e37299.
[5]  Hunt PJ, Yandle TG, Nicholls MG, Richards AM, Espiner EA (1995) The amino-terminal portion of pro-brain natriuretic peptide (Pro-BNP) circulates in human plasma. Biochem Biophys Res Commun 214: 1175–1183.
[6]  Florkowski CM, Richards AM, Espiner EA, Yandle TG, Frampton C (1994) Renal, endocrine, and hemodynamic interactions of atrial and brain natriuretic peptides in normal man. Am J Physiol 266: R1244–R1250.
[7]  Rosenstrom U, Skold C, Lindeberg G, Botros M, Nyberg F, et al. (2004) A selective AT2 receptor ligand with a gamma-turn-like mimetic replacing the amino acid residues 4–5 of angiotensin 11. J Med Chem 47: 859–870.
[8]  Osman AHK, Yuge S, Hyodo S, Sato S, Maeda S, et al. (2004) Molecular identification and immunohistochemical localization of atrial natriuretic peptide in the heart of the dromedary camel (Camelus dromedarius). Comp Biochem Physiol 139: 417–424.
[9]  Ben Guomi M, Raid F, Giry J, de la Farge F, Safwate A, et al. (1993) Hormonal control of water and sodium in plasma and urine of camels during dehydration and rehydration. Gen Comp Endocrinol 89: 378–386.
[10]  Ruskoaho H, Leskinen H, Magga J, Taskinen P, M?ntymaa P, et al. (1997) Mechanisms of mechanical load-induced atrial natriuretic peptide secretion: role of endothelin, nitric oxide, and angiotensin II. J Mol Med 75: 876–885.
[11]  Pemberton CJ, Yandle TG, Charles CJ, Rademaker MT, Aitkin GD, et al. (1997) Ovine brain natriuretic peptide in cardiac tissues and plasma: effects of cardiac hypertrophy and heart failure on tissue concentration and molecular forms. J Endocrinol 155: 541–550.
[12]  Davis CL, Briggs JP (1987) Effect of reduction in renal artery pressure on atrial natriuretic peptide-induced natriuresis. Am J Physiol 252: F146–F153.
[13]  Sosa RE, Volpe M, Marion DN, Atlas SA, Laragh JH, et al. (1986) Relationship between renal hemodynamic and natriuretic effects of atrial natriuretic factor. Am J Physiol 250: F520–F524.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133