[1] | Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407: 651–654.
|
[2] | Sear RP (2005) The cytoplasm of living cells: a functional mixture of thousands of components. J. Phys.: Condens. Matter 17: S3587–S3595.
|
[3] | Pang CN, Krycer JR, Lek A, Wilkins MR (2008) Are protein complexes made of cores, modules and attachments? Proteomics 8 (3): 425–34.
|
[4] | Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147.
|
[5] | Bobik TA (2006) Polyhedral organelles compartmenting bacterial metabolic processes. Appl. Microbiol. Biotechnol. 70: 517–525.
|
[6] | Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: Carboxysomes and related microcompartments. Nat. Rev. Microbiol. 6: 681–691.
|
[7] | Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, et al. (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat. Struct. Mol. Biol. 15: 939–947.
|
[8] | Glick BS (2007) Let there be order. Nature Cell Biol. 9: 130–132.
|
[9] | De la Fuente IM (2010) Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures. Int. J. Mol. Sci. 11(9): 3540–3599.
|
[10] | De la Fuente IM (2013) Metabolic Dissipative Structures. In: Systems Biology of Metabolic and signaling Networks: Energy, Mass and Information Transfer (eds. MA Aon, V Saks & U Schlattner). Springer Books. New York. (in press)
|
[11] | De La Fuente IM, Benítez N, Santamaría A, Veguillas J, Aguirregabiria JM (1999) Persistence in metabolic nets. Bull. Mathemat. Biol. 61: 573–595.
|
[12] | De La Fuente IM, Martínez L, Pérez-Samartín AL, Ormaetxea L, Amezaga C, et al.. (2008) Global Self-organization of the cellular metabolic structure. Plos One 3: e3100, 1–19.
|
[13] | Nelson LD, Cox MM (2004) Lehninger Principles of Biochemistry. Publisher: W. H. Freeman.
|
[14] | De la Fuente IM, Cortes J, Perez-Pinilla M, Ruiz-Rodriguez V, Veguillas J (2011) The metabolic core and catalytic switches are fundamental elements in the self-regulation of the Systemic Metabolic Structure of Cells. Plos One 6: e2722.
|
[15] | De La Fuente IM, Vadillo F, Pérez-Samartín AL, Pérez-Pinilla M-B, Bidaurrazaga J, et al. (2010) Global self-regulations of the cellular metabolic structure. PlosOne. 5, e9484 1–e9484: 15.
|
[16] | Almaas E, Oltvai ZN, Barabasi AL (2005) The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1(7): e68, 0557–563.
|
[17] | Almaas E (2007) Biological impacts and context of network theory. J. Exp. Biol. 210: 1548–1558.
|
[18] | Mogilevskaya E, Demin O, Goryanin I (2006) Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects.Journal of Biological Physics. 32: 245–271.
|
[19] | Yang CR, Shapiro BE, Hung SP, Mjolsness ED, Hatfield GW (2005) A mathematical model for the branched chain amino acid biosynthetic pathways of Escherichia coli K12. J Biol Chem. 280: 11224–32.
|
[20] | Korzeniewski B, Zoladz JA (2001) A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys Chem 92: 17–34.
|
[21] | Bier M, Teusink B, Kholodenko BN, Westerhoff HV (1996) Control analysis of glycolytic oscillations. Biophysical Chemistry 62: 15–24.
|
[22] | Kass L, Bray WO (1996) Kinetic model for phototransduction and G-protein enzyme cascade: understanding quantal bumps during inhibition of CaM-KII or PP2B. Journal of Photochemistry and Photobiology B: Biology 35: 105– I 13.
|
[23] | Gonze D, Halloy J, Goldbeter A (2004) Stochastic models for circadian oscillations: Emergence of a biological rhythm. Int J. Quantum Chem. 98: 228–238.
|
[24] | Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. PNAS 88: 7328–7332.
|
[25] | De la Fuente IM, Martínez L, Veguillas J (1995) Dynamic Behavior in Glycolytic Oscillations with Phase Shifts. Biosystems 35: 1–13.
|
[26] | De la Fuente IM, Cortes JM (2012) Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis. PLoS ONE 7(2): e30162.
|
[27] | De la Fuente IM, Martínez L, Veguillas J, Aguirregabiria JM (1996) Quasiperiodicity Route to Chaos in a Biochemical System. Biophys. J. 71: 2375–2379.
|
[28] | De la Fuente IM, Martínez L, Veguillas J, Aguirregabiria JM (1998) Coexistence of multiple periodic and chaotic regimes in biochemical oscillations. Acta Biotheoretica 46: 37–51.
|
[29] | De la Fuente IM, Martínez L, Veguillas J (1996) Intermittency Route to Chaos in a Biochemical System. Biosystems 39: 87–92.
|
[30] | De la Fuente IM (1999) Diversity of temporal self-organized behaviors in a biochemical system. BioSystems 50: 83–97.
|
[31] | De la Fuente IM, Martínez L, Aguirregabiria JM, Veguillas J (1998) R/S analysis in strange attractors. Fractals 6(2): 95–100.
|
[32] | De la Fuente IM, Martínez L, Benitez N, Veguillas J, Aguirregabiria JM (1998) Persistent behavior in a phase-shift sequence of periodical biochemical oscillations. Bulletin of Mathematical Biology. 60(4): 689–702.
|
[33] | De la Fuente IM, Martínez L, Aguirregabiria JM, Veguillas J, Iriarte M (1999) Long-range correlations in the phase-shifts of numerical simulations of biochemical oscillations and in experimental cardiac rhythms. Journal of Biological Systems 7(2): 113–130.
|
[34] | Goldbeter A (2007) Biological rhythms as temporal dissipative structures. Advances in Chemical Physics 135: 253–295.
|
[35] | Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427: 839–843.
|
[36] | De La Fuente IM, Vadillo F, Pérez-Pinilla M-B, Vera-López A, Veguillas J (2009) The number of catalytic elements is crucial for the emergence of metabolic cores. PlosOne 4, e7510 1–e7510: 11.
|
[37] | Viswanathan GM, Buldyrev SV, Havlin S, Stanley HE (1997) Quantification of DNA patchiness using long-range correlation measures. Biophys J 72: 866–875.
|
[38] | Eke A, Herman P, Kocsis L, Kozak LR (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23: R1–R38.
|
[39] | Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCH, Peng CK, et al. (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99: 2466–2472.
|
[40] | Ramanujan VK, Biener G, Herman B (2006) Scaling Behavior in Mitochondrial Redox Fluctuations. Biophys J 90: L70–L72.
|
[41] | Allegrini P, Buiatti M, Grigolini P, West BJ (1988) Fractal brownian motion as non stationary process: An alternative paradigm for DNA sequences. Phys Rev E 57: 4558–4562.
|
[42] | Audit B, Vaillant C, Arné A, D’Aubenton-Caraf Y, Thermes C (2004) Wavelet Analysis of DNA Bending Profiles reveals Structural Constraints on the Evolution of Genomic Sequences. Journal of Biological Physics 30: 33–81.
|
[43] | Kazachenko VN, Astashev ME, Grinevic AA (2007) Multifractal analysis of K+ channel activity.Biochemistry (Moscow). 2: 169–175.
|
[44] | Aon MA, Roussel MR, Cortassa S, O’Rourke B, Murray DB, et al.. (2008) The scale-free dynamics of eukaryotic cells. Plos One 3: e3624, 1–12.
|
[45] | Mahasweta D, Gebber GL, Barman SM, Lewis CD (2003) Fractal Properties of Sympathetic Nerve Discharge. J Neurophysiol 89: 833–840.
|
[46] | De la Fuente IM, Pérez-Samartín A, Martínez L, García MA, Vera-López A (2006) Long-range correlations in rabbit brain neural activity. Annals of Biomedical Engineering 34: 295–299.
|
[47] | Goldbeter A, Lefever R (1972) Dissipative structures for an allosteric model. Application to glycolytic oscillations.Biophys. J. 12: 1302–1315.
|
[48] | Goldbeter A (1990) Rythmes et chaos dans les systemes biochimiques et cellulaires. Masson, Paris.
|
[49] | Peretto P (1992) An Introduction to the Modeling of Neural Networks. Cambridge University Press.
|
[50] | Amit DJ (1992) Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press.
|
[51] | Hertz JA, Krogh AS, Palmer RG (1991) Introduction to the Theory of Neural Computation. Santa Fe Institute Series.
|
[52] | Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79(8): 2554–2558.
|
[53] | Amit DJ, Gutfreund H, Sompolinsky H (1987) Statistical Mechanics of Neural Networks Near Saturation. Ann Phys 173: 30–67.
|
[54] | Ackley DH, Hinton GE, Sejnowski TJ (1985) A Learning Algorithm for Boltzmann Machines. Cognitive Sci 9 (1): 147–169.
|
[55] | Hinton GH (2007) Scholarpedia. 2: 1668.
|
[56] | Roudi Y, Tyrcha J, Hertz J (2009) The ising model for neural data: model quality and approximate methods for extracting functional connectivity. Phys Rev E 79: 051915.
|
[57] | Kappen HJ, Rodriguez FB (1998) Efficient Learning in Boltzmann Machines Using Linear Response Theory. Neural Comput 10: 1137–1156.
|
[58] | Cover TM, Thomas JA (2006) Elements of Information Theory. Wiley.
|
[59] | Nocedal J, Wright SJ, Mit DJ (1999) Numerical Optimization. Springer-Verlag New York, Inc.
|
[60] | Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, New York.
|
[61] | Cormen TH, Leiserson CE, Rivest LR, Stein C (2009) Introduction to Algorithms. The MIT. Press.
|
[62] | Ashlock D (2006) Evolutionary Computation for Modeling and Optimization. Springer.
|
[63] | Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature: 222, 960–962.
|
[64] | Kohonen T (1972) Correlation Matrix Memories. IEEE Trans Comput C-21: 353–359.
|
[65] | Sejnowski TJ (1977) Storing Covariance with Nonlinearly Interacting Neurons. J Math Biol 4: 203–211.
|
[66] | Sejnowski TJ (1977) Storing Covariance with Nonlinearly Interacting Neurons. J Math Biol 4: 203–211.
|
[67] | Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor Dynamics in the Hippocampal Representation of the Local Environment. Science 308: 873–876.
|
[68] | Marro J, Dickman R (1999) Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge.
|
[69] | Greve A, Davidson DI, van Rossum MCW (2010) A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection. Hippocampus 20: 235–251.
|
[70] | Bogacz R, Brown MW (2003) Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus 13: 494–524.
|
[71] | Greve A, Sterratt DC, Donaldson DI, Willshaw DJ, van Rossum MCW (2009) Optimal learning rules for familiarity detection. Biological Cybernetics 100: 11–19.
|
[72] | Cortes JM, Greve A, Barrett AB, van Rossum MCW (2010) Dynamics and robustness of familiarity memory. Neural Computation 22: 448–466.
|
[73] | Weiner JH, Li L (2008) Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim Biophys Acta 1778(9): 1698–713.
|
[74] | Csaba P, Balázs P, Martin J, Lercher P, Csermely S, et al. (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440: 667–670.
|
[75] | Karp PD (2001) Pathway Databases: A Case Study in Computational Symbolic Theories. Science 293: 2040–2044.
|
[76] | Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers-the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38 (Database issue): D750– D753. Available: http://bionumbers.hms.harvard.edu/bionum?ber.aspx?&id=100084&ver=3.
|
[77] | Bremer H, Dennis PP (1996) Modulation of chemical composition and other parameters of the cell by growth rate. In: Frederick C, Neidhart ED, editors. Escherichia coli and Salmonella.
|
[78] | Cech T (2000) Structural biology. The ribosome is a ribozyme. Science 289(5481): 878–9.
|
[79] | Bremer H, Dennis PP (1996) Modulation of chemical composition and other parameters of the cell by growth rate. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press. Washington DC.
|
[80] | Van Bogelen RA, Abshire KZ, Pertsemlidis A, Clark RL (1996) In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Edited by F.C. Neidhardt, American Society for Microbiology (Washington, D.C.).
|
[81] | Russell PJ (2002) iGenetics, Chapter 5,16. Benjamin Cumming, San Francisco.
|
[82] | Cai SJ, Inouye M (2002) EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem. 277(27): 24155–61.
|
[83] | Stein LD (2004) Human Genome: End of the Beginning. Nature 431: 915–916.
|
[84] | Lane N, Martin W (2010) The energetics of genome complexity. Nature. 467(7318): 929–34.
|
[85] | Shirakawa T, Gunji YP (2007) Emergence of morphological order in the network formation of Physarum polycephalum. Biophys Chem. 128(2–3): 253–60.
|
[86] | Kessler D (1982) Plasmodial structure and motility. In Cell biology of Physarum and Didymium, eds H. C. Aldrich and J. W. Daniel. Australia: Academic Press. Sydney.
|
[87] | Ueda T, Matsumoto K, Kobatake Y (1986) Spatial and temporal organization of intracellular adenine nucleotides and cyclic nucleotides in relation to rhythmic motility in physarum plasmodium. Experimental Cell Research162 (2): 486–494.
|
[88] | Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407: 470–470.
|
[89] | Nakagaki T, Yamada H, Toth A (2001) Path-finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92: 47–52.
|
[90] | Miyaji T, Ohnishi I (2008) Physarum can solve the shortest path problem on riemannian surface mathematically rigourously. International Journal of Pure and Applied Mathematics 47(3): 353–369.
|
[91] | Nakagaki T, Yamada H, Hara M (2004) Smart network solutions in an amoeboid organism. Biophys Chem. 107(1): 1–5.
|
[92] | Nakagaki T, Kobayashi R, Ueda T, Nishiura Y (2004) Obtainning multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proc. R. Soc. Lond. B 271: 2305–2310.
|
[93] | Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett. 100(1): 018101.
|
[94] | Tsuda S, Zauner KP, Gunji YP (2007) Robot control with biological cells. Biosystems. 87(2–3): 215–223.
|
[95] | Gough J, Jones G, Lovell C, Macey P, Morgan H, et al. (2009) Integration of Cellular Biological Structures Into Robotic Systems. European Space Agency Acta Futura 3: 43–49.
|
[96] | Dussutour A, Latty T, Beekman M, Simpson SJ (2010) Amoeboid organism solves complex nutritional challenges. Proc. Natl. Acad. Sci. 107(10): 4607–4611.
|
[97] | Bonner JT (2010) Brainless behavior: a myxomycete chooses a balanced diet. Proc. Natl. Acad. Sci. 107(12): 5267–8.
|
[98] | Latty T, Beekman M (2011) Speed-accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum. Proc. Biol. Sci. 278(1705): 539–45.
|
[99] | Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, et al. (2010) Rules for Biologically Inspired Adaptive Network Design. Science 327: 439–442.
|
[100] | Marwan W (2010) Amoeba-inspired network design. Science 327: 419–20.
|
[101] | Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E Stat Nonlin Soft Matter Phys. 80: 021926.
|
[102] | Nakagaki T (2001) Smart behavior of true slime mold in a labyrinth. Res Microbiol. 152(9): 767–70.
|
[103] | Nakagaki T, Guy RD (2008) Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. Soft Matter, Vol. 4, 57–67.
|
[104] | Jennings HS (1905) Behavior of Lower Organisms. Reprint Edition, Indiana University Press, Bloomington.
|
[105] | Albrecht E, Petty RH (1998) Cellular memory: Neutrophil orientation reverses during temporally decreasing chemoattractant concentrations. Proc. Natl. Acad. Sci. USA. 95: 5039–5044.
|
[106] | Li L, N?rrelykke SF, Cox EC (2008) Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells. PLoS ONE 3(5): e2093.
|
[107] | Sidiropoulou K, Lu FM, Fowler MA, Xiao R, Phillips C, et al. (2009) Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nat Neurosci. 12(2): 190–9.
|