全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Calcium Induced Regulation of Skeletal Troponin — Computational Insights from Molecular Dynamics Simulations

DOI: 10.1371/journal.pone.0058313

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.

References

[1]  Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67: 39–67.
[2]  Kobayashi T, Jin L, de Tombe PP (2008) Cardiac thin filament regulation. Pflugers Arch 457: 37–46.
[3]  Arteaga GM, Kobayashi T, Solaro RJ (2002) Molecular actions of drugs that sensitize cardiac myofilaments to Ca2+. Ann Med 34: 248–258.
[4]  Endoh M (2008) Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J 72: 1915–1925.
[5]  McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267: 585–590.
[6]  Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75: 662–671.
[7]  Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, et al. (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330: 341–346.
[8]  Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys J 94: L75–L77.
[9]  Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14: 437–449.
[10]  Project E, Friedman R, Nachliel E, Gutman M (2006) A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure. Biophys J 90: 3842–3850.
[11]  Kobayashi C, Takada S (2006) Protein grabs a ligand by extending anchor residues: molecular simulation for Ca2+ binding to calmodulin loop. Biophys J 90: 3043–3051.
[12]  Dupuis L, Mousseau N (2012) Understanding the EF-hand closing pathway using non-biased interatomic potentials. J Chem Phys 136: 035101.
[13]  Deriu MA, Shkurti A, Paciello G, Bidone TC, Morbiducci U, et al. (2012) Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics. Proteins 80: 1598–1609.
[14]  Deriu MA, Bidone TC, Mastrangelo F, Di Benedetto G, Soncini M, et al. (2011) Biomechanics of actin filaments: a computational multi-level study. J Biomech 44: 630–636.
[15]  Fan J, Saunders MG, Voth GA (2012) Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. Biophys J 103: 1334–1342.
[16]  Varughese JF, Chalovich JM, Li Y (2010) Molecular dynamics studies on troponin (TnI-TnT-TnC) complexes: insight into the regulation of muscle contraction. J Biomol Struct Dyn 28: 159–174.
[17]  Varguhese JF, Li Y (2011) Molecular dynamics and docking studies on cardiac troponin C. J Biomol Struct Dyn. 29: 123–135.
[18]  Ertz-Berger BR, He H, Dowell C, Factor SM, Haim TE, et al. (2005) Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice. Proc Natl Acad Sci U S A 102: 18219–18224.
[19]  Lindert S, Kekenes-Huskey PM, Huber G, Pierce L, McCammon JA (2012) Dynamics and calcium association to the N-terminal regulatory domain of human cardiac troponin C: a multiscale computational study. J Phys Chem B 116: 8449–8459.
[20]  Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, et al. (2005) Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci U S A 102: 5038–5043.
[21]  Grabarek Z, Tan RY, Wang J, Tao T, Gergely J (1990) Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature 345: 132–135.
[22]  Herzberg O, James MN (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313: 653–659.
[23]  Herzberg O, Moult J, James MN (1986) A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261: 2638–2644.
[24]  Spyracopoulos L, Li MX, Sia SK, Gagne SM, Chandra M, et al. (1997) Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry. 36: 12138–12146.
[25]  Sia SK, Li MX, Spyracopoulos L, Gagne SM, Liu W, et al. (1997) Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 272: 18216–18221.
[26]  Paakkonen K, Annila A, Sorsa T, Pollesello P, Tilgmann C, et al. (1998) Solution structure and main chain dynamics of the regulatory domain (Residues 1–91) of human cardiac troponin C. J Biol Chem. 273: 15633–15638.
[27]  Li Y, Love ML, Putkey JA, Cohen C (2000) Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci U S A. 97: 5140–5145.
[28]  Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147–163 induces a structural opening in human cardiac troponin-C. Biochemistry 38: 8289–8298.
[29]  Vigil D, Gallagher SC, Trewhella J, Garcia AE (2001) Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys J 80: 2082–2092.
[30]  Fallon JL, Quiocho FA (2003) A closed compact structure of native Ca(2+)-calmodulin. Structure 11: 1303–1307.
[31]  Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8: 990–997.
[32]  Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. Journal of computational chemistry 26: 1781–1802.
[33]  Herzberg O, James MN (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol 203: 761–779.
[34]  Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, et al. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112: 535–542.
[35]  Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, et al. (2005) Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 352: 178–201.
[36]  Blumenschein TM, Stone DB, Fletterick RJ, Mendelson RA, Sykes BD (2006) Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys J 90: 2436–2444.
[37]  Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38, 27–38.
[38]  MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, et al. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins?. The Journal of Physical Chemistry B 102: 3586–3616.
[39]  Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 79: 926–935.
[40]  Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, et al. (1997) Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol 273: 238–255.
[41]  Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C (1997) Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5: 1695–1711.
[42]  Evenas J, Thulin E, Malmendal A, Forsen S, Carlstrom G (1997) NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry 36: 3448–3457.
[43]  Evenas J, Malmendal A, Thulin E, Carlstrom G, Forsen S (1998) Ca2+ binding and conformational changes in a calmodulin domain. Biochemistry 37: 13744–13754.
[44]  Gagne SM, Li MX, Sykes BD (1997) Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 36: 4386–4392.
[45]  Pearlstone JR, Chandra M, Sorenson MM, Smillie LB (2000) Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II Glu mutations. J Biol Chem 275: 35106–35115.
[46]  Chandra M, da Silva EF, Sorenson MM, Ferro JA, Pearlstone JR, et al. (1994) The effects of N helix deletion and mutant F29W on the Ca2+ binding and functional properties of chicken skeletal muscle troponin. J Biol Chem 269: 14988–14994.
[47]  Grabarek Z (2005) Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. J Mol Biol 346: 1351–1366.
[48]  Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359: 509–525.
[49]  Barkema GT, Mousseau N (1996) Event-Based Relaxation of Continuous Disordered Systems. Phys Rev Lett 77: 4358–4361.
[50]  Lindert S, Kekenes-Huskey PM, Huber G, Pierce L, McCammon JA (2012) Dynamics and Calcium Association to the N-Terminal Regulatory Domain of Human Cardiac Troponin C: A Multiscale Computational Study. J Phys Chem B.
[51]  Flicker PF, Phillips GN Jr, Cohen C (1982) Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol 162: 495–501.
[52]  Jin JP, Chong SM (2010) Localization of the two tropomyosin-binding sites of troponin T. Arch Biochem Biophys. 500: 144–150.
[53]  Pirani A, Xu C, Hatch V, Craig R, Tobacman LS, et al. (2005) Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 346: 761–772.
[54]  Paul DM, Morris EP, Kensler RW, Squire JM (2009) Structure and orientation of troponin in the thin filament. J Biol Chem 284: 15007–15015.
[55]  Knowles AC, Irving M, Sun YB (2012) Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction. J Mol Biol 421: 125–137.
[56]  Dong WJ, Jayasundar JJ, An J, Xing J, Cheung HC (2007) Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 46: 9752–9761.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133