[1] | Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67: 39–67.
|
[2] | Kobayashi T, Jin L, de Tombe PP (2008) Cardiac thin filament regulation. Pflugers Arch 457: 37–46.
|
[3] | Arteaga GM, Kobayashi T, Solaro RJ (2002) Molecular actions of drugs that sensitize cardiac myofilaments to Ca2+. Ann Med 34: 248–258.
|
[4] | Endoh M (2008) Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J 72: 1915–1925.
|
[5] | McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267: 585–590.
|
[6] | Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75: 662–671.
|
[7] | Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, et al. (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330: 341–346.
|
[8] | Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys J 94: L75–L77.
|
[9] | Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14: 437–449.
|
[10] | Project E, Friedman R, Nachliel E, Gutman M (2006) A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure. Biophys J 90: 3842–3850.
|
[11] | Kobayashi C, Takada S (2006) Protein grabs a ligand by extending anchor residues: molecular simulation for Ca2+ binding to calmodulin loop. Biophys J 90: 3043–3051.
|
[12] | Dupuis L, Mousseau N (2012) Understanding the EF-hand closing pathway using non-biased interatomic potentials. J Chem Phys 136: 035101.
|
[13] | Deriu MA, Shkurti A, Paciello G, Bidone TC, Morbiducci U, et al. (2012) Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics. Proteins 80: 1598–1609.
|
[14] | Deriu MA, Bidone TC, Mastrangelo F, Di Benedetto G, Soncini M, et al. (2011) Biomechanics of actin filaments: a computational multi-level study. J Biomech 44: 630–636.
|
[15] | Fan J, Saunders MG, Voth GA (2012) Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. Biophys J 103: 1334–1342.
|
[16] | Varughese JF, Chalovich JM, Li Y (2010) Molecular dynamics studies on troponin (TnI-TnT-TnC) complexes: insight into the regulation of muscle contraction. J Biomol Struct Dyn 28: 159–174.
|
[17] | Varguhese JF, Li Y (2011) Molecular dynamics and docking studies on cardiac troponin C. J Biomol Struct Dyn. 29: 123–135.
|
[18] | Ertz-Berger BR, He H, Dowell C, Factor SM, Haim TE, et al. (2005) Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice. Proc Natl Acad Sci U S A 102: 18219–18224.
|
[19] | Lindert S, Kekenes-Huskey PM, Huber G, Pierce L, McCammon JA (2012) Dynamics and calcium association to the N-terminal regulatory domain of human cardiac troponin C: a multiscale computational study. J Phys Chem B 116: 8449–8459.
|
[20] | Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, et al. (2005) Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci U S A 102: 5038–5043.
|
[21] | Grabarek Z, Tan RY, Wang J, Tao T, Gergely J (1990) Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature 345: 132–135.
|
[22] | Herzberg O, James MN (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313: 653–659.
|
[23] | Herzberg O, Moult J, James MN (1986) A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261: 2638–2644.
|
[24] | Spyracopoulos L, Li MX, Sia SK, Gagne SM, Chandra M, et al. (1997) Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry. 36: 12138–12146.
|
[25] | Sia SK, Li MX, Spyracopoulos L, Gagne SM, Liu W, et al. (1997) Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 272: 18216–18221.
|
[26] | Paakkonen K, Annila A, Sorsa T, Pollesello P, Tilgmann C, et al. (1998) Solution structure and main chain dynamics of the regulatory domain (Residues 1–91) of human cardiac troponin C. J Biol Chem. 273: 15633–15638.
|
[27] | Li Y, Love ML, Putkey JA, Cohen C (2000) Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci U S A. 97: 5140–5145.
|
[28] | Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147–163 induces a structural opening in human cardiac troponin-C. Biochemistry 38: 8289–8298.
|
[29] | Vigil D, Gallagher SC, Trewhella J, Garcia AE (2001) Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys J 80: 2082–2092.
|
[30] | Fallon JL, Quiocho FA (2003) A closed compact structure of native Ca(2+)-calmodulin. Structure 11: 1303–1307.
|
[31] | Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8: 990–997.
|
[32] | Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. Journal of computational chemistry 26: 1781–1802.
|
[33] | Herzberg O, James MN (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol 203: 761–779.
|
[34] | Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, et al. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112: 535–542.
|
[35] | Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, et al. (2005) Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 352: 178–201.
|
[36] | Blumenschein TM, Stone DB, Fletterick RJ, Mendelson RA, Sykes BD (2006) Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys J 90: 2436–2444.
|
[37] | Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38, 27–38.
|
[38] | MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, et al. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins?. The Journal of Physical Chemistry B 102: 3586–3616.
|
[39] | Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 79: 926–935.
|
[40] | Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, et al. (1997) Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol 273: 238–255.
|
[41] | Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C (1997) Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5: 1695–1711.
|
[42] | Evenas J, Thulin E, Malmendal A, Forsen S, Carlstrom G (1997) NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry 36: 3448–3457.
|
[43] | Evenas J, Malmendal A, Thulin E, Carlstrom G, Forsen S (1998) Ca2+ binding and conformational changes in a calmodulin domain. Biochemistry 37: 13744–13754.
|
[44] | Gagne SM, Li MX, Sykes BD (1997) Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 36: 4386–4392.
|
[45] | Pearlstone JR, Chandra M, Sorenson MM, Smillie LB (2000) Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II Glu mutations. J Biol Chem 275: 35106–35115.
|
[46] | Chandra M, da Silva EF, Sorenson MM, Ferro JA, Pearlstone JR, et al. (1994) The effects of N helix deletion and mutant F29W on the Ca2+ binding and functional properties of chicken skeletal muscle troponin. J Biol Chem 269: 14988–14994.
|
[47] | Grabarek Z (2005) Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. J Mol Biol 346: 1351–1366.
|
[48] | Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359: 509–525.
|
[49] | Barkema GT, Mousseau N (1996) Event-Based Relaxation of Continuous Disordered Systems. Phys Rev Lett 77: 4358–4361.
|
[50] | Lindert S, Kekenes-Huskey PM, Huber G, Pierce L, McCammon JA (2012) Dynamics and Calcium Association to the N-Terminal Regulatory Domain of Human Cardiac Troponin C: A Multiscale Computational Study. J Phys Chem B.
|
[51] | Flicker PF, Phillips GN Jr, Cohen C (1982) Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol 162: 495–501.
|
[52] | Jin JP, Chong SM (2010) Localization of the two tropomyosin-binding sites of troponin T. Arch Biochem Biophys. 500: 144–150.
|
[53] | Pirani A, Xu C, Hatch V, Craig R, Tobacman LS, et al. (2005) Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 346: 761–772.
|
[54] | Paul DM, Morris EP, Kensler RW, Squire JM (2009) Structure and orientation of troponin in the thin filament. J Biol Chem 284: 15007–15015.
|
[55] | Knowles AC, Irving M, Sun YB (2012) Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction. J Mol Biol 421: 125–137.
|
[56] | Dong WJ, Jayasundar JJ, An J, Xing J, Cheung HC (2007) Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 46: 9752–9761.
|