[1] | Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, et al. (2010) A Pumilio-induced RNA structure switch in p27–3' UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12: 1014–1020.
|
[2] | Ray PS, Jia J, Yao P, Majumder M, Hatzoglou M, et al. (2009) A stress-responsive RNA switch regulates VEGFA expression. Nature 457: 915–919.
|
[3] | Miyazaki Y, Garcia EL, King SR, Iyalla K, Loeliger K, et al. (2010) An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J Mol Biol 396: 141–152.
|
[4] | Grundy FJ, Henkin TM (2006) From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol 41: 329–338.
|
[5] | Serganov A, Patel DJ (2012) Molecular recognition and function of riboswitches. Curr Opin Struct Biol 22: 279–286.
|
[6] | Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8: R239.
|
[7] | Montange RK, Batey RT (2008) Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37: 117–133.
|
[8] | Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA (2009) Riboswitches: ancient and promising genetic regulators. ChemBioChem 10: 400–416.
|
[9] | Rieder R, Lang K, Graber D, Micura R (2007) Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. ChemBioChem 8: 896–902.
|
[10] | Rentmeister A, Mayer G, Kuhn N, Famulok M (2007) Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 35: 3713–3722.
|
[11] | Vinkenborg JL, Karnowski N, Famulok M (2011) Aptamers for allosteric regulation. Nat Chem Biol 7: 519–527.
|
[12] | Andou T, Endoh T, Mie M, Kobatake E (2009) RNA detection using peptide-inserted Renilla luciferase. Anal Bioanal Chem 393: 661–668.
|
[13] | Endoh T, Mie M, Funabashi H, Sawasaki T, Endo Y, et al (2007) Construction of intramolecular luciferase complementation probe for detecting specific RNA. Bioconjug Chem 18: 956–962.
|
[14] | Andou T, Endoh T, Mie M, Kobatake E (2011) Direct detection of RNAs in living cells using peptide-inserted Renilla luciferase. Analyst 136: 2446–2449.
|
[15] | Chen L, Frankel AD (1994) An RNA-binding peptide from bovine immunodeficiency virus Tat protein recognizes an unusual RNA structure. Biochemistry 33: 2708–2715.
|
[16] | Doi Y, Ohtsuki T, Shimizu Y, Ueda T, Sisido M (2007) Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. J Am Chem Soc 129: 14458–14462.
|
[17] | Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.
|
[18] | Tuerk C, Gold L 1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.
|
[19] | Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24: 381–403.
|
[20] | Ogawa A, Maeda M (2007) Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. Bioorg Med Chem Lett 17: 3156–3160.
|
[21] | Seetharaman S, Zivarts M, Sudarsan N, Breaker RR (2001) Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat Biotechnol 19: 336–341.
|
[22] | Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA 104: 14283–14288.
|
[23] | Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci USA 96: 3584–3589.
|
[24] | Soukup GA, Emilsson GA, Breaker RR (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J Mol Biol 298: 623–632.
|
[25] | Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263: 1425–1429.
|
[26] | Zimmermann GR, Wick CL, Shields TP, Jenison RD, Pardi A (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6: 659–667.
|
[27] | Berens C, Thain A, Schroeder R (2001) A tetracycline-binding RNA aptamer. Bioorg Med Chem 9: 2549–2556.
|
[28] | Campisi DM, Calabro V, Frankel AD (2001) Structure-based design of a dimeric RNA-peptide complex. EMBO J 20: 178–186.
|
[29] | Tok JB, Bi L, Huang S (2004) A comparative binding study of modified bovine immunodeficiency virus TAR RNA against its TAT peptide. Bioorg Med Chem Lett 14: 6101–6105.
|
[30] | Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, et al (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37: 14719–14735.
|
[31] | Nakano S, Fujimoto M, Hara H, Sugimoto N (1999) Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res 27: 2957–2965.
|
[32] | Endoh T, Sugimoto N (2011) Gene regulation system with an artificial RNA switch operating in human cells. ChemBioChem 12: 1174–1178.
|
[33] | Endoh T, Shintani R, Mie M, Kobatake E, Ohtsuki T, et al (2009) Detection of bioactive small molecules by fluorescent resonance energy transfer (FRET) in RNA-protein conjugates. Bioconjug Chem 20: 2242–2246.
|