Background Sperm cryopreservation has become an indispensable tool in biology. Initially, studies were aimed towards the development of efficient freezing protocols in different species that would allow for an efficient storage of semen samples for long periods of time, ensuring its viability. Nowadays, it is widely known that an important individual component exists in the cryoresistance of semen, and efforts are aimed at identifying those sperm characteristics that may allow us to predict this cryoresistance. This knowledge would lead, ultimately, to the design of optimized freezing protocols for the sperm characteristics of each male. Methodology/Principal Findings We have evaluated the changes that occur in the sperm head dimensions throughout the cryopreservation process. We have found three different patterns of response, each of one related to a different sperm quality at thawing. We have been able to characterize males based on these patterns. For each male, its pattern remained constant among different ejaculates. This latter would imply that males always respond in the same way to freezing, giving even more importance to this sperm feature. Conclusions/Significance Changes in the sperm head during cryopreservation process have resulted useful to identify the ability of semen of males for freezing. We suggest that analyses of these response patterns would represent an important tool to characterize the cryoresistance of males when implemented within breeding programs. We also propose follow-up experiments to examine the outcomes of the use of different freezing protocols depending on the pattern of response of males.
References
[1]
Stolovicki E, Braun E (2011) Collective dynamics of gene expression in cell populations. PLoS ONE 6(6): e20530.
[2]
Benson JD, Woods EJ, Walters EM, Critser JK (2012) The cryobiology of spermatozoa. Theriogenology 78: 1682–1699.
[3]
Thurston LM, Watson PF, Mileham AJ, Holt WV (2001) Morphological sperm subpopulations defined by fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. Journal of Andrology 22: 382–394.
[4]
Januskauskas A, Johannisson A, Rodríguez-Martínez H (2003) Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. Theriogenology 60: 743–758.
[5]
Martínez-Pastor F, García-Macias V, Alvarez M, Herraez P, Anel L, et al. (2005) Sperm subpopulations in Iberian red deer epididymal sperm and their changes through the cryopreservation process. Biol Reprod 72: 316–327.
[6]
Hernández M, Roca J, Ballester J, Vazquez JM, Martínez EA, et al. (2006) Differences in SCSA outcome among boars with different freezability. Int J Androl 29: 583–591.
[7]
Nú?ez-Martínez I, Morán JM, Pe?a FJ (2007) Identification of sperm morphometric subpopulations in the canine ejaculate: do they reflect different subpopulations in sperm chromatin integrity? Zygote 15(3): 257–266.
[8]
Ramón M, Martínez-Pastor F, García-álvarez O, Maroto-Morales A, Soler AJ, et al. (2012) Taking advantage of the use of supervised learning methods for characterization of sperm population structure related with freezability in the Iberian red deer. Theriogenology 77: 1661–1672.
[9]
Holt WV (2000) Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology 53: 47–58.
[10]
Thurston LM, Watson PF, Holt WV (2002) Sperm cryopreservation: a genetic explanation for species and individual variation. Cryo Letters 23: 255–262.
[11]
Soler AJ, García AJ, Fernández-Santos MR, Esteso MC, Garde JJ (2003) Effects of thawing procedure on postthawed in vitro viability and in vivo fertility of red deer epididymal spermatozoa cryopreserved at –196°C. J Androl 24: 746–756.
[12]
Esteso MC, Fernández-Santos MR, Soler AJ, Montoro V, Quintero-Moreno A, et al. (2003) The effects cryopreservation on the morphometric dimensions of Iberian red deer (Cervus elaphus hispanicus) Epididymal Sperm Heads. Reprod Dom Anim 41: 241–246.
[13]
Gravance CG, Casey ME, Casey PJ (2009) Pre-freeze bull sperm head morphometry related to post-thaw fertility. Anim Repord Sci 114: 81–88.
[14]
Thurston LM, Siggins K, Mileham AJ, Watson PF, Holt WV (2002b) Identification of amplified restriction fragment length poly-morphism markers linked to genes controlling boar sperm viability following cryopreservation. Biol Reprod 66: 545–554.
[15]
Salamon S, Maxwell WMC (1995) Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Anim Repord Sci 37: 185–249.
[16]
Salamon S, Maxwell WMC (1995) Frozen storage of ram semen II. Causes of low fertility after cervical insemination and methods of improvement. Anim Reprod Sci 38: 1–36.
[17]
Martín G, Sabido O, Durand P, Levy R (2004) Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol Reprod 71(1): 28–37.
[18]
Sancho S, Casas I, Ekwall H, Saravia F, Rodríguez-Martínez H, et al. (2007) Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction 134: 11–121.
[19]
Pe?a FJ, Saravia F, García-Herreros M, Nú?ez-Martínez I, Tapia JA, et al. (2005) Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. J Androl 26: 716–723.
[20]
Gravance CG, Vishwanath R, Pitt C, Garner DL, Casey PJ (1998) Effects of cryopreservation on bull sperm head morphometry. J Androl 19: 704–709.
[21]
Curry MR, Kleinhans FW, Watson PF (2000) Measurement of the water permeability of the membranes of boar, ram, and rabbit spermatozoa using concentrationdependent self-quenching of an entrapped fluorophore. Cryobiol 41: 167–173.
[22]
Arruda RP, Ball BA, Gravance CG, Garcia RP, Liu IKM (2002) Effects of extenders and cryoprotectants on stallion sperm head morphometry. Theriogenology 58: 252–256.
[23]
Thomas C, Garner D, DeJarnette J, Marshall C (1997) Fluorometric assessments of acrosomal integrity and viability in cryopreserved bovine spermatozoa. Biol Reprod 56: 991–998.
[24]
Pe?a AI, Lugilde LL, Barrio M, Herradon PG, Quintela LA (2003) Effects of Equex from different sources on post-thaw survival, long- evity and intracellular Ca2+ concentration of dog spermatozoa. Theriogenology 59: 1725–1739.
[25]
Rijsselaere T, Van Soom A, Hoflack G, Maes D, de Kruif A (2004) Automated sperm morphometry and morphology analysis of canine semen by the Hamilton-Thorne analyser. Theriogenology 62: 1292–1306.
[26]
álvarez M, García-Macías V, Martínez-Pastor F, Martínez F, Borragán S, et al. (2008) Effects of cryopreservation on head morphometry and its relation with chromatin status in brown bear (Ursus arctos) spermatozoa. Theriogenology 70: 1498–1506.
[27]
Petrunkina AM, Gr?per B, Günzel Apel AR, T?pfer Pedersen E (2004) Functional significance of the cell volume for detecting sperm membrane changes and predicting the freezability in dog semen. Reproduction 128: 829–842.
[28]
Hidalgo M, Rodríguez I, Dorado JM (2007) The effect of cryopreservation on sperm head morphometry in Florida male goat related to sperm freezability. Anim Reprod Sci 100: 61–72.
[29]
Maroto-Morales A, Ramón M, García-Alvarez O, Soler AJ, Esteso MC, et al. (2010) Characterization of ram (Ovis aries) sperm head morphometry using the Sperm-Class Analyzer. Theriogenology 73: 437–448.
[30]
Mazur P, Cole KW (1989) Roles of unfrozen fraction, salt concentration and changes in cell volumes in the survival of human erythrocytes. Cryobiol 26: 1–29.
[31]
Hammerstedt RH, Graham JK, Nolan JP (1990) Cryopreservation of mammalian sperm: what we ask them to survive. J Androl 11: 73–88.
[32]
Quinn PJ (1989) Principles of membrane stability and phase behaviour under extreme conditions. J Bioenerg Biomemb 21: 3–19.
[33]
Pe?a FJ, Johannisson A, Wallgren M, Rodriguez Martinez H (2004) Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: changes in sperm membrane lipid architecture. Zygote 12: 117–124.
[34]
Armitage WJ (1986) Osmotic stress as a factoring the detrimental effect of glycerol on human platelets. Cryobiol 23: 116–125.
[35]
Fiser PS, Fairfull FW (1989) The effect of glycerol-related osmotic changes on post-thaw motility and acrosomal integrity of ram spermatozoa. Cryobiol 26: 64–69.
[36]
Schneider U, Mazur P (1984) Osmotic consequences of cryoprotectant permeability and its relationship to the survival of frozen-thawed embryos. Theriogenology 21: 68–79.
[37]
Roldan ER, Cassinello J, Abaigar T, Gomendio M (1998) Inbreeding, fluctuating asymmetry, and ejaculate quality in an endangered ungulate. Proc Biol Sci 265(1392): 243–248.
[38]
Pe?a AI, Johannisson A, Linde-Forsberg C (2001) Validation of flow cytometry for assessment of viability and acrosomal integrity of dog spermatozoa and for evaluation of different methods of cryo- preservation. Journal of Reproduction and Fertility 57: 371–376.
[39]
García-Alvarez O, Maroto-Morales A, Martínez-Pastor F, Garde JJ, Ramón M, et al. (2009) Sperm characteristics and in vitro fertilization ability of thawed spermatozoa from Black Manchega ram: electroejaculation and postmortem collection. Theriogenology 72: 160–168.
[40]
Martínez-Pastor F, Mata-Campuzano M, Alvarez-Rodríguez M, Alvarez M, Anel L, et al. (2010) Probes and techniques for sperm evaluation by flow cytometry. Reprod Domest Anim 45(2): 67–78.
[41]
R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/