Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R2adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R2adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.
References
[1]
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K., Available:http://www.ipcc.ch/publications_and_data?/publications_and_data_reports.shtml#1. Accessed 16 January 2013.
[2]
Moore SE (2008) Marine mammals as ecosystem sentinels. J of Mammal 89: 534–540.
[3]
Evans PGH, Pierce GJ, Panigada S (2010) Climate change and marine mammals. J Mar Biol Assoc UK 90: 1483–1487.
[4]
Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, et al. (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.
[5]
Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science 295: 2273.
[6]
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, et al. (2008) The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322: 225–230.
[7]
IUCN (2011) IUCN Red List of Threatened Species. Version 2011.2. Available: www.iucnredlist.org. Accessed 30 May 2012.
[8]
Evans K, Thresher R, Warneke RM, Bradshaw CJA, Pook M, et al. (2005) Periodic variability in cetacean strandings: links to large-scale climate events. Biol Letters 1: 147–150.
[9]
Maldini D, Mazzuca L, Atkinson S (2005) Odontocete stranding patterns in the mainHawaiian Islands (1937–2002): how do they compare with live animal surveys? Pac Sci 59: 55–67.
[10]
Norman S, Bowlby C, Brancato M, Calambokidis J, Duffield D, et al. (2004) Cetacean strandings in Oregon and Washington between 1930 and 2002. J Cetac Res Manage 6: 87–100.
[11]
Le Boeuf B, Perez-Cortes M H, Urban R J, Mate B, Ollervides u F (2000) High gray whale mortality and low recruitment in 1999: potential causes and implications. J Cetac Res Manage 2: 85–100.
[12]
Scholin C, Gulland F, Doucette G, Benson S, Busman M, et al. (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403: 80–84.
[13]
Doucette GJ, Cembella AD, Martin JL, Michaud J (2006) Paralytic shellfish poisoning (PSP) toxins in North Atlantic right whales Eubalaena glacialis and their zooplankton prey in the Bay of Fundy, Canada. Mar Ecol Prog Ser 306: 303–313.
[14]
Taylor M (2003) Habitat degradation in the context of climate change: A review of recent work. International Whaling Comission. 12.
[15]
MacLeod CD, Bannon SM, Pierce GJ, Schweder C, Learmonth JA, et al. (2005) Climate change and the cetacean community of north-west Scotland. Biol Conserv 124: 477–483.
[16]
Leeney RH, Amies R, Broderick AC, Witt MJ, Loveridge J, et al. (2008) Spatio temporal analysis of cetacean strandings and bycatch in a UK fisheries hotspot. Biodivers Conserv 17: 2323–2338.
[17]
Johnston DW, Bowers MT, Friedlaender AS, Lavigne DM (2012) The effects of climate change on harp seals (Pagophilus groenlandicus).. PloS ONE 7(1): e29158 DOI:10.1371/journal.pone.0029158.
[18]
Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, et al. (2002) Ecological effects of climate fluctuations. Science 297: 1292–1296.
[19]
Forchhammer MC, Post E (2004) Using large-scale climate indices in climate change ecology studies. Popul Ecol 46: 1–12.
[20]
Hemery G, D'Amico F, Castege I, Dupont B, D'Elbee J, et al. (2008) Detecting the impact of oceano-climatic changes on marine ecosystems using a multivariate index: The case of the Bay of Biscay (North Atlantic-European Ocean). Glob Change Biol 14: 27–38.
[21]
Savenkoff C, Castonguay M, Chabot D, Hammill MO, Bourdages H, et al. (2007) Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift? Estuar Coast Shelf S 73: 711–724.
[22]
Harvey M, Devine L (2008) Oceanographic conditions in the Estuary and the Gulf of St. Lawrence during 2007: zooplankton. Technical Report. DFO Science Advisory Secretariat Research Document 2008/037: 35pp.
[23]
Galbraith PS, Chassé J, Gilbert D, Larouche P, Brickman P, et al. (2011) Physical oceanographic conditions in the Gulf of St. Lawrence in 2010. Technical Report. DFO Science Advisory Secretariat Research Document 2011/045: 82pp.
[24]
Koutitonsky V, Bugden G (1991) The physical oceanography of the Gulf of St. Lawrence: a review with emphasis on the synoptic variability of the motion. In: Therriault JC (ed) The Gulf of St Lawrence: small ocean or big estuary. Can Spec Pub l Fish Aquat Sci 113: 57–90.
[25]
Marchand C, Simard Y, Gratton Y (1999) Concentration of capelin (Mallotus villosus) in tidal upwelling fronts at the head of the Laurentian Channel in the St. Lawrence estuary. Can J Fish Aquat Sci 56: 1832–1848.
[26]
Cotté C, Simard Y (2005) Formation of dense krill patches under tidal forcing at whale feeding hot spots in the St. Lawrence Estuary. Mar Ecol Prog Ser 288: 199–210.
[27]
Simard Y, Lavoie D (1999) The rich krill aggregation of the Saguenay–St. Lawrence Marine Park: hydroacoustic and geostatistical biomass estimates, structure, variability and significance for whales. Can J Fish Aquat Sci 56: 1182–1197.
[28]
Galbraith PS (2006) Winter water masses in the Gulf of St. Lawrence. J Geophys Res (C Oceans) 111: C06022.
[29]
Gilbert DBP (1997) Interannual variability (1948–1994) of the CIL core temperature in the Gulf of St. Lawrence. Can J Fish Aquat Sci 54 (Suppl.1).
[30]
Cyr F, Bourgault D, Galbraith PS (2011) Interior versus boundary mixing of a cold intermediate layer. J Geophys Res (C Oceans) 116: C12029.
[31]
Geraci JR, Lounsbury VJ (2005) Cetaceans - Mass strandings. In: Geraci JR, Lounsbury VJ, editors. Marine Mammals Ashore: A Field Guide for Strandings. Baltimore MD: National Aquarium in Baltimore. 113–127.
[32]
Harvey M, Galbraith PS, Descroix A (2009) Vertical distribution and diel migration of macrozooplankton in the St. Lawrence marine system (Canada) in relation with the cold intermediate layer thermal properties. Prog Oceanogr 80: 1–21.
[33]
Galbraith PS, Larouche P, Chasse J, Petrie B (2012) Sea-surface temperature in relation to air temperature in the Gulf of St. Lawrence: interdecadal variability and long term trends. Deep-Sea Res II (Top Stud Oceanogr) 77–80: 10–20.
[34]
Blasco D, Levasseur M, Bonneau E, Gélinas R, et al. (1998) Patterns of paralytic shellfish toxicity in the St. Lawrence region in relationship with the abundance and distribution of Alexandrium tamarense. Sci Mar 67: 261–278.
[35]
Mitchell MR, Harrison G, Pauley K, Gagné A, Maillet G, et al.. (2002) Atlantic Zonal Monitoring Program sampling protocol. Can Tec Rep Hydrog Ocean Sci. 23.
[36]
Mysak L, Ingram R, Wang J, Van Der Baaren A (1996) The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos Ocean 34: 313–343.
[37]
Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676.
[38]
Stern HL, Heide J?rgensen MP (2003) Trends and variability of sea ice in Baffin Bay and Davis Strait, 1953–2001. Polar Res 22: 11–18.
[39]
Ferguson SH, Stirling I, McLoughlin P (2005) Climate change and ringed sea (Phoca hispida) recruitment in western Hudson Bay. Mar Mammal Sci 21: 121–135.
[40]
Johnston DW, Friedlander AS, Torres LG, Lavigne DM (2005) Variation in ice cover on the East Coast of Canada, February-March, 1969–2006: Implications for harp and hooded seals. Climate Res 29: 209–222.
[41]
R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[42]
Zar JH (1999) Biostatistical analysis. New Jersey: Prentice-Hall Inc. 663 p.
[43]
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach. Fort Collins: Springer. 485 p.
[44]
Buisson L, Thuiller W, Lek S, Lim P, Grenouillet G (2008) Climate change hastens the turnover of stream fish assemblages. Glob Change Biol 14: 2232–2248.
[45]
DFO (2007) A Review of Ice Conditions and Potential Impact on Harp Seal Neonatal Mortality in March 2007. DFO Canadian Science Advisory Secretariat Science Response 2007/008.
[46]
DFO (2003) Proceedings of the workshop on the development of research priorities for the northwest Atlantic blue whale population. DFO Canadian Science Advisory Secretariat Proceeding Series 2003/031.
[47]
Sears R, Williamson JM, Wenzel FW, Bérubé M, Gendron D, et al. (2000) Photographic identification of the blue whale (Balaenoptera musculus) in the Gulf of St. Lawrence, Canada. Reports of the International Whaling Commission (Special Issue) 12: 335–342.
[48]
Walther GR, Post E, Convey P, Menzel A, Parmesan C, et al. (2002) Ecological responses to recent climate change. Nature 416: 389–395.
[49]
MacLeod CD, Bannon SM, Pierce GJ, Schweder C, Learmonth JA, et al. (2005) Climate change and the cetacean community of north-west Scotland. Biol Conserv 124: 477–483.
[50]
Plourde S, Winkler G, Joly P, St-Pierre J-F, Starr M (2011) Long-term seasonal and interannual variations of krill spawning in the lower St Lawrence estuary, Canada, 1979 2009. J Plankton Res 33(5): 703–714.
[51]
Bowen WD, Siniff DB (1999) Distribution, population, biology, and feeding ecology of marine mammals. In: Reynolds JE ΙΙΙ, Rommel SA, editors. Biology of marine mammals. Washington, D.C. : Smithsonian Institution Press. 423–484.
[52]
Higdon JW, Ferguson SH (2009) Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecol Appl 19: 1365–1375.
[53]
Ferguson SH, Dueck L, Loseto LL, Luque SP (2010) Bowhead whale Balaena mysticetus seasonal selection of sea ice. Mar Ecol Prog Ser 411: 285–297.
[54]
Lesage V, Gosselin J-F, Hammill M, Kingsley MCS, Lawson J (2007) Ecologically and Biologically Significant Areas (EBSAs) in the Estuary and Gulf of St. Lawrence: a marine mammal perspective. Technical Report. DFO Science Advisory Secretariat Research Document 2007/046: 92pp.
[55]
McMahon CR, Burton HR (2005) Climate change and seal survival: evidence for environmentaly mediated changes in elephant seal, Mirounga leonina, pup survival. P Roy Soc B-Biol Sci 272: 923–928.
[56]
Biuw M, Boehme L, Guinet C, Hindell M, Costa D, et al. (2007) Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. P Nat Acad Sci USA 104: 13705.
[57]
Weise AM, Levasseur M, Saucier FJ, Senneville S, Bonneau E, et al. (2002) The link between precipitation, river runoff, and blooms of the toxic dinoflagellate Alexandrium tamarense in the St. Lawrence. Can J Fish Aquat Sci 59: 464–473.
[58]
Fauchot J, Levasseur M, Roy S, Gagnon R, Weise AM (2005) Environmental factors controlling Alexandrium tamarense (Dinophyceae) growth rate during a red tide event in the St. Lawrence Estuary (Canada). J Phycol 41: 263–272.
[59]
Doniol-Valcroze T, Berteaux D, Larouche P, Sears R (2007) Influence of thermal fronts on habitat selection by four rorqual whale species in the Gulf of St. Lawrence. Mar Ecol Prog Ser 335: 207–216.
[60]
Bost C, Cotté C, Bailleul F, Cherel Y, Charrassin J, et al. (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Marine Syst 78: 363–376.
[61]
Moore JE, Barlow JP (2013) Declining Abundance of Beaked Whales (Family Ziphiidae) in the California Current Large Marine Ecosystem. PLoS ONE 8(1): e52770 DOI:10.1371/journal.pone.0052770.
[62]
Nemiroff L, Wimmer T, Daoust PY, McAlpine DF (2010) Cetacean strandings in the Canadian maritime provinces, 1990–2008. Can Field Nat 124: 32–44.
[63]
Flewelling LJ, Naar JP, Abbott JP, Baden DG, Barros NB, et al. (2005) Red tides and marine mammal mortalities. Nature 435: 755–756.
[64]
Murase H, Matsuoka K, Ichii T, Nishiwaki S (2002) Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35 degrees E-145 degrees W). Polar Biol 25: 135–145.