Background Nicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant’s capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection. Methodology/Results RNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription. Conclusions The assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant.
References
[1]
Marks CE, Newbigin E, Ladiges PY (2011) Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust Syst Bot 24: 61–86.
[2]
Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: Its History and Future as a Model for Plant–Pathogen Interactions. Mol Plant Microbe Interact 21: 1015–1026.
[3]
Clemente T (2006) Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). In: Wang K, editor. Agrobacterium Protocols: Humana Press. 143–154.
[4]
Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: A versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47: 967–976.
[5]
Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53: 289–298.
[6]
Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1: 2019–2025.
[7]
Naim F, Nakasugi K, Crowhurst RN, Hilario E, Zwart AB, et al.. (2012) Advanced metabolic engineering in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein PLoS One: In press.
[8]
Wood CC, Petrie JR, Shrestha P, Mansour MP, Nichols PD, et al. (2009) A leaf-based assay using interchangeable design principles to rapidly assemble multistep recombinant pathways. Plant Biotechnol J 7: 914–924.
[9]
Zhou Y, Ni M (2010) SHORT HYPOCOTYL UNDER BLUE1 Truncations and Mutations Alter Its Association with a Signaling Protein Complex in Arabidopsis. Plant Cell 22: 703–715.
[10]
Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16: 265–272.
Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 37: D32–D36.
[20]
Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[21]
Mulder N, Apweiler R (2007) InterPro and InterProScan. In: Bergman N, editor. Comparative Genomics: Humana Press. 59–70.
[22]
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.
[23]
Parra G, Bradnam K, Ning Z, Keane T, Korf I (2009) Assessing the gene space in draft genomes. Nucleic Acids Res 37: 289–297.
[24]
Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
[25]
Li B, Dewey C (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323.
[26]
Robinson M, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25.
[27]
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652.
[28]
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
[29]
Team RC (2012) R: A Language and Environment for Statistical Computing. R J.
[30]
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515.
[31]
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628.
[32]
Bullard J, Purdom E, Hansen K, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.
[33]
Oshlack A, Robinson M, Young M (2010) From RNA-seq reads to differential expression results. Genome Biol 11: 220.
[34]
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
[35]
Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res.
[36]
Li W, Jiang T (2012) Transcriptome Assembly and Isoform Expression Level Estimation from Biased RNA-Seq Reads. Bioinformatics.
[37]
Schliesky S, Gowik U, Weber APM, Braeutigam A (2012) RNA-seq assembly – Are we there yet? Front Plant Sci 3.
[38]
Kozik A, Matvienko M, Michelmore RW (2010) Effects Of Filtering, Trimming, Sampling And K-mer Value On De Novo Assembly Of Illumina GA Reads; January 9–13; Plant & Animal Genomes XVIII Conference. San Diego, CA.
[39]
Li Z, Chen Y, Mu D, Yuan J, Shi Y, et al.. (2011) Comparison of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph. Brief Funct Genomics.
[40]
Faino L, de Jonge R, Thomma BP (2012) The transcriptome of Verticillium dahliae-infected Nicotiana benthamiana determined by deep RNA sequencing. Intravital 7: 1065–1069.
[41]
Duan J, Xia C, Zhao G, Jia J, Kong X (2012) Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics 13: 392.
[42]
Gruenheit N, Deusch O, Esser C, Becker M, Voelckel C, et al. (2012) Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants. BMC Genomics 13: 92.
[43]
Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, et al. (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12: S2.
[44]
Hu H, Bandyopadhyay P, Olivera B, Yandell M (2011) Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics 12: 60.
[45]
Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061–1067.
[46]
Bombarely A, Edwards K, Sanchez-Tamburrino J, Mueller L (2012) Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: A phylogenomic perspective. BMC Genomics 13: 406.
[47]
Tomato_Genome_Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641.
[48]
Rensink W, Lee Y, Liu J, Iobst S, Ouyang S, et al. (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics 6: 1–14.
[49]
Lu J, Du Z-X, Kong J, Chen L-N, Qiu Y-H, et al. (2012) Transcriptome Analysis of Nicotiana tabacum Infected by Cucumber mosaic virus during Systemic Symptom Development. PLoS One 7: e43447.
[50]
Barakat A, DiLoreto D, Zhang Y, Smith C, Baier K, et al. (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9: 51.
[51]
Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, et al. (2011) The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1–3 516R44. PLoS One 6: e26801.
[52]
Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22: 1184–1195.
[53]
Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiol 147: 456–468.
[54]
Yang S-J, Carter SA, Cole AB, Cheng N-H, Nelson RS (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci U S A 101: 6297–6302.
[55]
Ying X-B, Dong L, Zhu H, Duan C-G, Du Q-S, et al.. (2010) RNA-Dependent RNA Polymerase 1 from Nicotiana tabacum Suppresses RNA Silencing and Enhances Viral Infection in Nicotiana benthamiana. Plant Cell: 1358–1372.
[56]
Jones L, Keining T, Eamens A, Vaistij FE (2006) Virus-Induced Gene Silencing of Argonaute Genes in Nicotiana benthamiana Demonstrates That Extensive Systemic Silencing Requires Argonaute1-Like and Argonaute4-Like Genes. Plant Physiol 141: 598–606.
[57]
Bai M, Yang G-S, Chen W-T, Mao Z-C, Kang H-X, et al. (2012) Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501: 52–62.
[58]
Brigneti G, Voinnet O, Li W-X, Ji L-H, Ding S-W, et al. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17: 6739–6746.
[59]
Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, et al. (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580: 2442–2450.
Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11: 204–220.
[62]
Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, et al. (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7: 1168–1175.
[63]
Dadami E, Boutla A, Vrettos N, Tzortzakaki S, Karakasilioti I, et al.. (2012) DICER-LIKE 4 but not DICER- LIKE 2 may have a positive effect on Potato spindle tuber viroid accumulation in Nicotiana benthamiana. Mol Plant.
[64]
Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, et al. (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464: 628–632.
[65]
Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, et al. (2006) Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science 313: 68–71.