Background/Aim To investigate the roles of biomedical factors, hepatitis B virus (HBV) DNA levels, genotypes, and specific viral mutation patterns on the progression of hepatocellular carcinoma (HCC) patients below 40 years of age in Qidong, China. Methods We conducted a case-control study within a cohort of 2387 male HBV carriers who were recruited from August, 1996. The HBV DNA sequence was determined in 49 HCC and 90 chronic hepatitis (CH) patients below 40 years of age. Mutation exchanges during follow-up in 32 cases were compared with 65 controls with paired serum samples. In addition, a consecutive series of samples from 14 HCC cases were employed to compare the sequences before and after the occurrence of HCC. Results After adjustment for age, history of cigarette smoking and alcohol consumption, HBeAg positive, HBV DNA levels ≥4.00 log10 copies/mL, pre-S deletion, T1762/A1764 double mutations, and T1766 and/or A1768 mutations were associated with risk of young age HCC. Moreover, the presence of an increasing number of HCC-related mutations (pre-S deletion, T1762/A1764, and T1766 and/or A1768 mutations) was associated with an increased risk of young age HCC. Paired samples analysis indicated that the increased HCC risk for at-risk sequence mutations were attributable to the persistence of these mutations, but not a single time point mutation. The longitudinal observation demonstrated a gradual combination of pre-S deletion, T1762/A1764 double mutations, and T1766 and/or A1768 mutations during the development of HCC. Conclusion High HBV DNA levels and pre-S deletion were independent risk factors of young age HCC. Combination of pre-S deletion and core promoter mutations increased the risk and persistence of at-risk sequence mutations is critical for HCC development.
Lu SN, Su WW, Yang SS, Chang TT, Cheng KS, et al. (2006) Secular trends and geographic variations of hepatitis B virus and hepatitis C virus-associated hepatocellular carcinoma in Taiwan. Int J Cancer 119: 1946–52.
[3]
Chen CJ, Yang HI, Iloeje UH (2009) Hepatitis B virus DNA levels and outcomes in chronic hepatitis B. Hepatology. 49: S72–84.
[4]
Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42: 1208–36.
[5]
Yang HI, Lu SN, Liaw YF, You SL, Sun CA, et al. (2002) Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 347: 168–74.
[6]
Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127: S5–S16.
[7]
Lam CM, Chan AO, Ho P, Ng IO, Lo CM, at al (2004) Different presentation of hepatitis B-related hepatocellular carcinoma in a cohort of 1863 young and old patients - implications for screening. Aliment Pharmacol Ther 19: 771–7.
[8]
Chen CJ, Yang HI, Su J, Jen CL, You SL, et al. (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama 295: 65–73.
[9]
Chan HL, Tse CH, Mo F, Koh J, Wong VW, et al. (2008) High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 26: 177–82.
[10]
Yang HI, Yeh SH, Chen PJ, Iloeje UH, Jen CL, et al. (2008) Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst 100: 1134–43.
[11]
Chou YC, Yu MW, Wu CF, Yang SY, Lin CL, et al. (2008) Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 57: 91–7.
[12]
Yuen MF, Tanaka Y, Shinkai N, Poon RT, But DY, et al. (2008) Risk for hepatocellular carcinoma with respect to hepatitis B virus genotypes B/C, specific mutations of enhancer II/core promoter/precore regions and HBV DNA levels. Gut 57: 98–102.
[13]
Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, et al. (2007) Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology 133: 1466–74.
[14]
Ito K, Tanaka Y, Orito E, Sugiyama M, Fujiwara K, et al. (2006) T1653 mutation in the box alpha increases the risk of hepatocellular carcinoma in patients with chronic hepatitis B virus genotype C infection. Clin Infect Dis 42: 1–7.
[15]
Namieno T, Kawata A, Sato N, Kondo Y, Uchino J (1995) Age-related, different clinicopathologic features of hepatocellular carcinoma patients. Ann Surg 221: 308–14.
[16]
Qu LS, Liu TT, Jin F, Guo YM, Chen TY, et al. (2010) Combined pre-S deletion and core promoter mutations related to hepatocellular carcinoma: A nested case-control study in China. Hepatol Res 41: 54–63.
[17]
El-Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340: 745–50.
Sezaki H, Kobayashi M, Hosaka T, Someya T, Akuta N, et al. (2004) Hepatocellular carcinoma in noncirrhotic young adult patients with chronic hepatitis B viral infection. J Gastroenterol 39: 550–6.
[20]
Kim JH, Choi MS, Lee H, Kim do Y, Lee JH, et al. (2006) Clinical features and prognosis of hepatocellular carcinoma in young patients from a hepatitis B-endemic area. J Gastroenterol Hepatol 21: 588–94.
[21]
Ohata K, Hamasaki K, Toriyama K, Ishikawa H, Nakao K, et al. (2004) High viral load is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. J Gastroenterol Hepatol 19: 670–5.
[22]
Gao ZY, Li T, Wang J, Du JM, Li YJ, et al. (2007) Mutations in preS genes of genotype C hepatitis B virus in patients with chronic hepatitis B and hepatocellular carcinoma. J Gastroenterol 42: 761–8.
[23]
Yuen MF, Tanaka Y, Fong DY, Fung J, Wong DK, et al. (2009) Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol. 50: 80–8.
[24]
Guo X, Jin Y, Qian G, Tu H (2008) Sequential accumulation of the mutations in core promoter of hepatitis B virus is associated with the development of hepatocellular carcinoma in Qidong, China. J Hepatol 49: 718–25.
[25]
Chisari FV, Ferrari C (1995) Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13: 29–60.
[26]
Ferrari C, Cavalli A, Penna A, Valli A, Bertoletti A, et al. (1992) Fine specificity of the human T-cell response to the hepatitis B virus preS1 antigen. Gastroenterology 103: 255–63.
[27]
Chen BF, Liu CJ, Jow GM, Chen PJ, Kao JH, at al (2006) High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 130: 1153–68.
[28]
Fan YF, Lu CC, Chen WC, Yao WJ, Wang HC, et al. (2001) Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 33: 277–86.
[29]
Baumert TF, Rogers SA, Hasegawa K, Liang TJ (1996) Two core promotor mutations identified in a hepatitis B virus strain associated with fulminant hepatitis result in enhanced viral replication. J Clin Invest 98: 2268–76.
[30]
Kidd AH, Kidd-Ljunggren K (1996) A revised secondary structure model for the 3′-end of hepatitis B virus pregenomic RNA. Nucleic Acids Res 24: 3295–301.
[31]
Kay A, Zoulim F (2007) Hepatitis B virus genetic variability and evolution. Virus Res 127: 164–76.
[32]
Li J, Buckwold VE, Hon MW, Ou JH (1999) Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. J Virol 73: 1239–44.