全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Targeted Induction of Interferon-λ in Humanized Chimeric Mouse Liver Abrogates Hepatotropic Virus Infection

DOI: 10.1371/journal.pone.0059611

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background & Aims The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). Methods This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Results Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. Conclusions These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

References

[1]  Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30: 16–34.
[2]  Akira S (2011) Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci 366: 2748–2755.
[3]  Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, et al. (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347: 975–982.
[4]  Yuen MF, Hui CK, Cheng CC, Wu CH, Lai YP, et al. (2001) Long-term follow-up of interferon alfa treatment in Chinese patients with chronic hepatitis B infection: The effect on hepatitis B e antigen seroconversion and the development of cirrhosis-related complications. Hepatology 34: 139–145.
[5]  Marukian S, Andrus L, Sheahan TP, Jones CT, Charles ED, et al. (2011) Hepatitis C virus induces interferon-lambda and interferon-stimulated genes in primary liver cultures. Hepatology 54: 1913–1923.
[6]  Thomas E, Gonzalez VD, Li Q, Modi AA, Chen W, et al. (2012) HCV Infection Induces a Unique Hepatic Innate Immune Response Associated with Robust Production of Type III Interferons. Gastroenterology 142: 978–988.
[7]  Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, et al. (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461: 399–401.
[8]  Rauch A, Kutalik Z, Descombes P, Cai T, Di Iulio J, et al.. (2010) Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138: 1338–1345, 1345 e1331–1337.
[9]  Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, et al. (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41: 1100–1104.
[10]  Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, et al. (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 41: 1105–1109.
[11]  Hirabayashi K, Yano J, Inoue T, Yamaguchi T, Tanigawara K, et al. (1999) Inhibition of cancer cell growth by polyinosinic-polycytidylic acid/cationic liposome complex: a new biological activity. Cancer Res 59: 4325–4333.
[12]  Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, et al. (2004) Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res 10: 7721–7726.
[13]  Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738.
[14]  Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227: 54–65.
[15]  Dandri M, Burda MR, Torok E, Pollok JM, Iwanska A, et al. (2001) Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 33: 981–988.
[16]  Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, et al. (2001) Hepatitis C virus replication in mice with chimeric human livers. Nat Med 7: 927–933.
[17]  Nakagawa S, Umehara T, Matsuda C, Kuge S, Sudoh M, et al. (2007) Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem Biophys Res Commun 353: 882–888.
[18]  Sugiyama M, Tanaka Y, Kato T, Orito E, Ito K, et al. (2006) Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens. Hepatology 44: 915–924.
[19]  Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, et al. (2004) Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 165: 901–912.
[20]  Takeuchi T, Katsume A, Tanaka T, Abe A, Inoue K, et al. (1999) Real-time detection system for quantification of hepatitis C virus genome. Gastroenterology 116: 636–642.
[21]  Tanaka T, Inoue K, Hayashi Y, Abe A, Tsukiyama-Kohara K, et al. (2004) Virological significance of low-level hepatitis B virus infection in patients with hepatitis C virus associated liver disease. J Med Virol 72: 223–229.
[22]  Kashiwakuma T, Hasegawa A, Kajita T, Takata A, Mori H, et al. (1996) Detection of hepatitis C virus specific core protein in serum of patients by a sensitive fluorescence enzyme immunoassay (FEIA). J Immunol Methods 190: 79–89.
[23]  Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, et al. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448: 501–505.
[24]  Sakamoto H, Okamoto K, Aoki M, Kato H, Katsume A, et al. (2005) Host sphingolipid biosynthesis as a target for hepatitis C virus therapy. Nat Chem Biol 1: 333–337.
[25]  Watanabe T, Sudoh M, Miyagishi M, Akashi H, Arai M, et al. (2006) Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. Gene Ther 13: 883–892.
[26]  Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, et al. (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32: e109.
[27]  Gidlund M, Orn A, Wigzell H, Senik A, Gresser I (1978) Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature 273: 759–761.
[28]  Djeu JY, Heinbaugh JA, Holden HT, Herberman RB (1979) Role of macrophages in the augementation of mouse natural killer cell activity by poly I:C and interferon. J Immunol 122: 182–188.
[29]  Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, et al. (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4: 69–77.
[30]  Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, et al. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4: 63–68.
[31]  Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, et al. (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45: 164–171.
[32]  Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T, et al. (2011) IFN-lambda determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci U S A 108: 7944–7949.
[33]  Iversen MB, Ank N, Melchjorsen J, Paludan SR (2010) Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-kappaB than type I IFNs. J Virol 84: 4579–4586.
[34]  Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T, et al. (2010) Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J Virol 84: 5670–5677.
[35]  Mordstein M, Kochs G, Dumoutier L, Renauld JC, Paludan SR, et al. (2008) Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog 4: e1000151.
[36]  Kumar H, Kawai T, Kato H, Sato S, Takahashi K, et al. (2006) Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 203: 1795–1803.
[37]  Li K, Chen Z, Kato N, Gale M Jr, Lemon SM (2005) Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 280: 16739–16747.
[38]  Wang N, Liang Y, Devaraj S, Wang J, Lemon SM, et al. (2009) Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol 83: 9824–9834.
[39]  Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, et al. (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102: 2992–2997.
[40]  Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172.
[41]  Bellecave P, Sarasin-Filipowicz M, Donze O, Kennel A, Gouttenoire J, et al. (2010) Cleavage of mitochondrial antiviral signaling protein in the liver of patients with chronic hepatitis C correlates with a reduced activation of the endogenous interferon system. Hepatology 51: 1127–1136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133