全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Comparative RNA-Seq and Microarray Analysis of Gene Expression Changes in B-Cell Lymphomas of Canis familiaris

DOI: 10.1371/journal.pone.0061088

Full-Text   Cite this paper   Add to My Lib

Abstract:

Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq appeared more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use of drugs targeting this pathway in lymphomas.

References

[1]  Shearin AL, Ostrander EA (2010) Leading the Way: Canine Models of Genomics and Disease. Dis Model Mech 3: 27–34 doi:10.1242/dmm.004358.
[2]  Rowell JL, McCarthy DO, Alvarez CE (2011) Dog models of naturally occurring cancer. Trends Mol Med 17: 380–388 doi:10.1016/j.molmed.2011.02.004.
[3]  Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18: 781–792.
[4]  Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans-man and his best friend share more than companionship. Chromosome Res 16: 145–154 doi:10.1007/s10577-007-1212-4.
[5]  Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30.
[6]  SEER Cancer Statistics Review 1975–2009 (Vintage 2009 Populations) (n.d.). Available: http://seer.cancer.gov/csr/1975_2009_pop?s09/. Accessed 2012 Apr 25.
[7]  Marconato L (2011) The staging and treatment of multicentric high-grade lymphoma in dogs: A review of recent developments and future prospects. The Veterinary Journal 188: 34–38 doi:10.1016/j.tvjl.2010.04.027.
[8]  Fisher RI, Shah P (2003) Current trends in large cell lymphoma. Leukemia 17: 1948–1960 doi:10.1038/sj.leu.2403096.
[9]  Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, et al. (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24: 3121–3127 doi:10.1200/JCO.2005.05.1003.
[10]  Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM, et al. (1993) Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med 328: 1002–1006 doi:10.1056/NEJM199304083281404.
[11]  Shendure J (2008) The beginning of the end for microarrays? Nature Methods 5: 585–587 doi:10.1038/nmeth0708–585.
[12]  Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: 87–98 doi:10.1038/nrg2934.
[13]  Su Z, Li Z, Chen T, Li Q-Z, Fang H, et al. (2011) Comparing Next-Generation Sequencing and Microarray Technologies in a Toxicological Study of the Effects of Aristolochic Acid on Rat Kidneys. Chem Res Toxicol 24: 1486–1493 doi:10.1021/tx200103b.
[14]  Liu F, Jenssen T-K, Trimarchi J, Punzo C, Cepko C, et al. (2007) Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates. BMC Genomics 8: 153 doi:10.1186/1471-2164-8-153.
[15]  Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18: 1509–1517 doi:10.1101/gr.079558.108.
[16]  't Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, et al. (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36: e141 doi:10.1093/nar/gkn705.
[17]  Bradford J, Hey Y, Yates T, Li Y, Pepper S, et al. (2010) A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics 11: 282 doi:10.1186/1471-2164-11-282.
[18]  Malone J, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology 9: 34 doi:10.1186/1741-7007-9-34.
[19]  Vanherberghen M, Bureau F, Peters IR, Day MJ, Clercx C, et al. (2012) Analysis of gene expression in canine sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis: A transcriptomic analysis. Vet Microbiol 157: 143–151 doi:10.1016/j.vetmic.2011.12.009.
[20]  Wittenburg LA, Ptitsyn AA, Thamm DH (2012) A systems biology approach to identify molecular pathways altered by HDAC inhibition in osteosarcoma. J Cell Biochem 113: 773–783 doi:10.1002/jcb.23403.
[21]  Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulkner GJ, et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods 5: 613–619 doi:10.1038/nmeth.1223.
[22]  Asmann Y, Klee E, Thompson EA, Perez E, Middha S, et al. (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics 10: 531 doi:10.1186/1471-2164-10-531.
[23]  Fu X, Fu N, Guo S, Yan Z, Xu Y, et al. (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10: 161 doi:10.1186/1471-2164-10-161.
[24]  Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, et al. (2005) A Robust Algorithm for Copy Number Detection Using High-Density Oligonucleotide Single Nucleotide Polymorphism Genotyping Arrays. Cancer Res 65: 6071–6079 doi:10.1158/0008-5472.CAN-05-0465.
[25]  Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society 57: 289–300.
[26]  Benjamini Y, Speed TP (2012) Summarizing and Correcting the GC Content Bias in High-Throughput Sequencing. Nucl Acids Res Available:http://nar.oxfordjournals.org/content/ea?rly/2012/02/08/nar.gks001. Accessed 14 May 2012.
[27]  Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36: e105 doi:10.1093/nar/gkn425.
[28]  Zheng W, Chung LM, Zhao H (2011) Bias detection and correction in RNA-Sequencing data. BMC Bioinformatics 12: 290 doi:10.1186/1471-2105-12-290.
[29]  Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768–772 doi:10.1038/nature08872.
[30]  Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97: 10101–10106.
[31]  Alter O, Brown PO, Botstein D (2003) Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci USA 100: 3351–3356 doi:10.1073/pnas.0530258100.
[32]  Friguet C, Kloareg M, Causeur D (2009) A Factor Model Approach to Multiple Testing Under Dependence. Journal of the American Statistical Association 104: 1406–1415 doi:10.1198/jasa.2009.tm08332.
[33]  Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3: 1724–1735 doi:10.1371/journal.pgen.0030161.
[34]  Leek JT, Storey JD (2008) A general framework for multiple testing dependence. Proc Natl Acad Sci USA 105: 18718–18723 doi:10.1073/pnas.0808709105.
[35]  Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909 doi:10.1038/ng1847.
[36]  Sun Y, Zhang N, Owen A (2011) Multiple hypothesis testing, adjusting for latent variables.
[37]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25 doi:10.1186/gb-2009-10-3-r25.
[38]  Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111 doi:10.1093/bioinformatics/btp120.
[39]  Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics Available:http://bioinformatics.oxfordjournals.org?/content/early/2011/06/21/bioinformatics?.btr355. Accessed 9 August 2012.
[40]  R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available:http://www.R-project.org.
[41]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80 doi:10.1186/gb-2004-5-10-r80.
[42]  Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28: 882–883 doi:10.1093/bioinformatics/bts034.
[43]  Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011: bar049 doi:10.1093/database/bar049.
[44]  Charif D, Lobry JR (2007) SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural Approaches to Sequence Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 207–232. Available: http://www.springer.com/physics/biophysi?cs%26biologicalphysics/book/978-3-540-35?305-8. Accessed 2012 May 7.
[45]  Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al.. (2012) vegan: Community Ecology Package. Available: http://CRAN.R-project.org/package=vegan.
[46]  Dezs? Z, Nikolsky Y, Nikolskaya T, Miller J, Cherba D, et al. (2009) Identifying disease-specific genes based on their topological significance in protein networks. BMC Systems Biology 3: 36 doi:10.1186/1752-0509-3-36.
[47]  Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol 12: R112 doi:10.1186/gb-2011-12-11-r112.
[48]  Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253 doi:10.1111/j.1541-0420.2005.00440.x.
[49]  Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences 100: 9440–9445 doi:10.1073/pnas.1530509100.
[50]  Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, et al. (1995) Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res 55: 5342–5347.
[51]  Hansen KD, Irizarry RA, Wu Z (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13: 204–216 doi:10.1093/biostatistics/kxr054.
[52]  Furlotte NA, Kang HM, Ye C, Eskin E (2011) Mixed-Model Coexpression: Calculating Gene Coexpression While Accounting for Expression Heterogeneity. Bioinformatics 27: i288–i294 doi:10.1093/bioinformatics/btr221.
[53]  Derrien T, Vaysse A, André C, Hitte C (2012) Annotation of the domestic dog genome sequence: finding the missing genes. Mamm Genome 23: 124–131 doi:10.1007/s00335-011-9372-0.
[54]  Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, et al. (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321: 956–960 doi:10.1126/science.1160342.
[55]  Kim JY, Park HS, Lim D, Jang HC, Park HS, et al. (2011) Functional analysis of expressed sequence tags from the liver and brain of Korean Jindo dogs. BMB Rep 44: 238–243 doi:10.5483/BMBRep.2011.44.4.238.
[56]  Chen C, Grennan K, Badner J, Zhang D, Gershon E, et al. (2011) Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods. PLoS ONE 6: e17238 doi:10.1371/journal.pone.0017238.
[57]  Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biology 11: R106 doi:10.1186/gb-2010-11-10-r106.
[58]  Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11: R25 doi:10.1186/gb-2010-11-3-r25.
[59]  Painter MW, Davis S, Hardy RR, Mathis D, Benoist C (2011) Transcriptomes of the B and T lineages compared by multiplatform microarray profiling. J Immunol 186: 3047–3057 doi:10.4049/jimmunol.1002695.
[60]  Schatz JH (2011) Targeting the PI3K/AKT/mTOR pathway in non-Hodgkin's lymphoma: results, biology, and development strategies. Curr Oncol Rep 13: 398–406 doi:10.1007/s11912-011-0187-7.
[61]  Witzig TE, Gupta M (2010) Signal transduction inhibitor therapy for lymphoma. Hematology Am Soc Hematol Educ Program 2010: 265–270 doi:10.1182/asheducation-2010.1.265.
[62]  Chung EY, Psathas JN, Yu D, Li Y, Weiss MJ, et al. (2012) CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis. The Journal of clinical investigation Available:http://www.ncbi.nlm.nih.gov/pubmed/22546?857. Accessed 7 May 2012.
[63]  Pogue SL, Kurosaki T, Bolen J, Herbst R (2000) B Cell Antigen Receptor-Induced Activation of Akt Promotes B Cell Survival and Is Dependent on Syk Kinase. J Immunol 165: 1300–1306.
[64]  Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, et al. (2009) Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113: 6069–6076 doi:10.1182/blood-2009-01-199679.
[65]  Flowers CR, Sinha R, Vose JM (2010) Improving outcomes for patients with diffuse large B-cell lymphoma. CA Cancer J Clin 60: 393–408 doi:10.3322/caac.20087.
[66]  Dunleavy K, Wilson WH (2012) How I treat HIV-associated lymphoma. Blood 119: 3245–3255 doi:10.1182/blood-2011-08-373738.
[67]  Huang S-H, Kozak PJ, Kim J, Habineza-Ndikuyeze G, Meade C, et al.. (n.d.) Evidence of an oncogenic gammaherpesvirus in domestic dogs. Virology. Available: http://www.sciencedirect.com/science/art?icle/pii/S0042682212001183. Accessed 2012 Mar 12.
[68]  Milman G, Smith KC, Erles K (2011) Serological detection of Epstein-Barr virus infection in dogs and cats. Vet Microbiol 150: 15–20 doi:10.1016/j.vetmic.2010.12.013.
[69]  Infanti L, Silvestri F, Fanin R, Salmaso F, Zaja F, et al. (1996) The F-MACHOP regimen in the treatment of aggressive non-Hodgkin's lymphomas: a single center experience in 72 patients. Haematologica 81: 521–528.
[70]  Amadori D (2011) Moving forward with new data and approaches: a fresh look at anthracyclines in non-Hodgkin's lymphoma. Hematol Rep 3: e1 doi:10.4081/hr.2011.s3.e1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133