全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Large-Scale Modelling of the Divergent Spectrin Repeats in Nesprins: Giant Modular Proteins

DOI: 10.1371/journal.pone.0063633

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht–ANC–Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.

References

[1]  Broderick MJF, Winder SJ (2005) Spectrin, alpha-actinin, and dystrophin. Adv Protein Chem 70: 203–246.
[2]  Djinovic-Carugo K, Gautel M, Yl?nne J, Young P (2002) The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS letters 513: 119–123.
[3]  Pascual J, Pfuhl M, Rivas G, Pastore a, Saraste M (1996) The spectrin repeat folds into a three-helix bundle in solution. FEBS letters 383: 201–207.
[4]  Pascual J, Pfuhl M, Walther D, Saraste M, Nilges M (1997) Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. J Mol Biol 273: 740–751.
[5]  Grum VL, Li D, MacDonald RI, Mondragón a (1999) Structures of two repeats of spectrin suggest models of flexibility. Cell 98: 523–535.
[6]  Padmakumar VC, Abraham S, Braune S, Noegel Aa, Tunggal B, et al. (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295: 330–339.
[7]  Rajgor D, Mellad JA, Autore F, Zhang Q, Shanahan CM (2012) Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS One 7: e40098.
[8]  Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, et al. (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118: 673–687.
[9]  Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, et al. (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114: 4485–4498.
[10]  Libotte T, Zaim H, Abraham S, Padmakumar VC, Schneider M, et al. (2005) Lamin A/C – dependent Localization of Nesprin-2, a Giant Scaffolder at the Nuclear Envelope. Mol Biol Cell 16: 3411–3424.
[11]  Mislow JMK, Holaska JM, Kim MS, Lee KK, Segura-Totten M, et al. (2002) Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS letters 525: 135–140.
[12]  Mislow JMK, Kim MS, Davis DB, McNally EM (2002) Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 115: 61–70.
[13]  Wheeler Ma, Ellis Ja (2008) Molecular signatures of Emery-Dreifuss muscular dystrophy. Biochem Soc T 36: 1354–1358.
[14]  Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, et al. (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16: 2816–2833.
[15]  Wheeler Ma, Davies JD, Zhang Q, Emerson LJ, Hunt J, et al. (2007) Distinct functional domains in nesprin-1alpha and nesprin-2beta bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy. Exp Cell Res 313: 2845–2857.
[16]  Amann KJ, Guo aW, Ervasti JM (1999) Utrophin lacks the rod domain actin binding activity of dystrophin. J Biol Chem 274: 35375–35380.
[17]  Rybakova IN, Ervasti JM (2005) Identification of spectrin-like repeats required for high affinity utrophin-actin interaction. J Biol Chem 280: 23018–23023.
[18]  Rybakova IN, Humston JL, Sonnemann KJ, Ervasti JM (2006) Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem 281: 9996–10001.
[19]  Simpson JG, Roberts RG (2008) Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms. Biochem Soc T 36: 1359–1367.
[20]  Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families database. Nucleic Acids Res 36: D281–288.
[21]  An X, Guo X, Zhang X, Baines AJ, Debnath G, et al. (2006) Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications. J Biol Chem 281: 10527–10532.
[22]  An X, Zhang X, Salomao M, Guo X, Yang Y, et al. (2006) Thermal stabilities of brain spectrin and the constituent repeats of subunits. Biochemistry 45: 13670–13676.
[23]  Bhasin N, Law R, Liao G, Safer D, Ellmer J, et al. (2005) Molecular extensibility of mini-dystrophins and a dystrophin rod construct. J Mol Biol 352: 795–806.
[24]  MacDonald RI, Cummings Ja (2004) Stabilities of folding of clustered, two-repeat fragments of spectrin reveal a potential hinge in the human erythroid spectrin tetramer. Proc Natl Acad Sci 101: 1502–1507.
[25]  Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12: 85–94.
[26]  Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188–1190.
[27]  Vishwanatha KS, Wang YP, Keutmann HT, Mains RE, Eipper BA (2012) Structural organization of the nine spectrin repeats of Kalirin. Biochemistry 51: 5663–5673.
[28]  Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407–410.
[29]  Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277: 396–404.
[30]  Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38: W529–533.
[31]  Laudau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, et al. (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33: 299–302.
[32]  Pare GC, Easlick JL, Mislow JM, McNally EM, Kapiloff MS (2005) Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res 303: 388–399.
[33]  Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275: 31986–31995.
[34]  Warren DT, Tajsic T, Mellad Ja, Searles R, Zhang Q, et al. (2010) Novel nuclear nesprin-2 variants tether active extracellular signal-regulated MAPK1 and MAPK2 at promyelocytic leukemia protein nuclear bodies and act to regulate smooth muscle cell proliferation. J Biol Chem 285: 1311–1320.
[35]  Cavallo L, Kleinjung J, Fraternali F (2003) POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res 31: 3364–3366.
[36]  Fraternali F, Cavallo L (2002) Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Nucleic Acids Res 30: 2950–2960.
[37]  Kusunoki H, MacDonald RI, Mondragón A (2004) Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure 12: 645–656.
[38]  Mirijanian DT, Chu J-W, Ayton GS, Voth Ga (2007) Atomistic and coarse-grained analysis of double spectrin repeat units: the molecular origins of flexibility. J Mol Biol 365: 523–534.
[39]  Amedei A, Linssen ABM, Berendsen HJC (1993) Essential Dynamics of Proteins. Proteins 17: 412–425.
[40]  Golji J, Collins R, Mofrad MRK (2009) Molecular mechanics of the alpha-actinin rod domain: bending, torsional, and extensional behavior. PLoS Comput Biol 5: e1000389.
[41]  Ortiz V, Nielsen SO, Klein ML, Discher DE (2005) Unfolding a linker between helical repeats. J Mol Biol 349: 638–647.
[42]  Warren DT, Zhang Q, Weissberg PL, Shanahan CM (2005) Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell function? Expert Rev Mol Med 7: 1–15.
[43]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[44]  Murzin aG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
[45]  Schneider M, Tognolli M, Bairoch A (2004) The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools. Plant physiology and biochemistry: PPB/Société fran?aise de physiologie végétale 42: 1013–1021.
[46]  Eddy SR (1998) Profile hidden Markov models. Imagine: 755-763.
[47]  Lupyan D, Leo-Macias A, Ortiz AR (2005) A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21: 3255–3263.
[48]  O'Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C (2004) 3DCoffee: combining protein sequences and structures within multiple sequence alignments. J Mol Biol 340: 385–395.
[49]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
[50]  Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815.
[51]  Kabsch WCS (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637.
[52]  Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005) GROMACS: fast, flexible, and free. J Comput Chem 26: 1701–1718.
[53]  Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25: 1656–1676.
[54]  Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B, editor. pp. 331-342.
[55]  Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690.
[56]  Darden T, Perera L, Li L, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7: 55–60.
[57]  Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Molec Graphics 14: 33–38.
[58]  Fogl C, Puckey L, Hinssen U, Zaleska M, El-Mezgueldi M, et al.. (2011) A structural and functional dissection of the cardiac stress response factor MS1. Proteins.
[59]  Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2: 661–665.
[60]  Schroder S, Fraternali F, Quan X, Scott D, Qian F, et al. (2011) When a module is not a domain: the case of the REJ module and the redefinition of the architecture of polycystin-1. Biochem J 435: 651–660.
[61]  Jerschow A, Muller N (1997) Suppression of Convection Artifacts in Stimulated-Echo Diffusion Experiments. Double-Stimulated-Echo Experiments. J Magn Reson 125.
[62]  Ylanne J, Scheffzek K, Young P, Saraste M (2001) Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure 9: 597–604.
[63]  Liu J, Taylor DW, Taylor KA (2004) A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 338: 115–125.
[64]  Djinovic-Carugo K, Young P, Gautel M, Saraste M (1999) Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments. Cell 98: 537–546.
[65]  Kowalski K, Merkel AL, Booker GW (2004) 1H, 13C and 15N resonance assignments of the third spectrin repeat of alpha-actinin-4. J Biomol NMR 29: 533–534.
[66]  Kusunoki H, Minasov G, Macdonald RI, Mondragón A (2004) Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin. J Mol Biol 344: 495–511.
[67]  Park S, Caffrey MS, Johnson ME, Fung LW (2003) Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem 278: 21837–21844.
[68]  Vorobiev SM, Su M, Seetharaman J, Shastry R, Foote EL, et al.. (2008) Crystal structure of the human brain alpha spectrin repeats 15 and 16. Northeast Structural Genomics Consortium target HR5563a.
[69]  Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, et al. (1993) Crystal structure of the repetitive segments of spectrin. Science 262: 2027–2030.
[70]  Ipsaro JJ, Harper SL, Messick TE, Marmorstein R, Mondragón A, et al. (2010) Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115: 4843–4852.
[71]  Stabach PR, Simonovic I, Ranieri MA, Aboodi MS, Steitz TA, et al. (2009) The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113: 5377–5384.
[72]  Davis L, Abdi K, Machius M, Brautigam C, Tomchick DR, et al. (2009) Localization and structure of the ankyrin-binding site on beta2-spectrin. J Biol Chem 284: 6982–6987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133