The widespread insecticide resistance raises concerns for vector control implementation and sustainability particularly for the control of the main vector of human malaria, Anopheles gambiae sensu stricto. However, the extent to which insecticide resistance mechanisms interfere with the development of the malignant malaria parasite in its vector and their impact on overall malaria transmission remains unknown. We explore the impact of insecticide resistance on the outcome of Plasmodium falciparum infection in its natural vector using three An. gambiae strains sharing a common genetic background, one susceptible to insecticides and two resistant, one homozygous for the ace-1R mutation and one for the kdr mutation. Experimental infections of the three strains were conducted in parallel with field isolates of P. falciparum from Burkina Faso (West Africa) by direct membrane feeding assays. Both insecticide resistant mutations influence the outcome of malaria infection by increasing the prevalence of infection. In contrast, the kdr resistant allele is associated with reduced parasite burden in infected individuals at the oocyst stage, when compared to the susceptible strain, while the ace-1R resistant allele showing no such association. Thus insecticide resistance, which is particularly problematic for malaria control efforts, impacts vector competence towards P. falciparum and probably parasite transmission through increased sporozoite prevalence in kdr resistant mosquitoes. These results are of great concern for the epidemiology of malaria considering the widespread pyrethroid resistance currently observed in Sub-Saharan Africa and the efforts deployed to control the disease.
References
[1]
WHO (2011) World Malaria Report. Available: http://www.who.int/entity/malaria/world_?malaria_report_2011/9789241564403_eng.pd?f.
[2]
Diabaté A, Baldet T, Chandre F, Akogbéto M, Guiguemde TR, et al. (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67: 617–622.
[3]
Lines JD (1988) Do agricultural insecticides select for insecticide resistance in mosquitoes? A look at the evidence. Parasitol today 4: S17–S20.
[4]
Labbé P, Alout H, Djogbénou L, Weill M, Pasteur N (2011) Evolution of Resistance to Insecticide in Disease Vectors. In: Tibayrenc M, editor. Genetics and Evolution of Infectious Diseases. Elsevier Inc. 363–409.
[5]
Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, et al. (2003) Insecticide resistance in mosquito vectors. Nature 7: 7–8.
[6]
Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, et al. (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.. Insect Mol Biol 7: 179–184.
[7]
Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113: 287–296.
[8]
Djogbénou L, Dabiré KR, Diabaté A, Kengne P, Akogbéto M, et al. (2008) Identification and geographic distribution of the ACE-1R mutation in the malaria vector Anopheles gambiae in south-western Burkina Faso, West Africa. Am J Trop Med Hyg 78: 298–302.
[9]
Lynd A, Weetman D, Barbosa S, Yawson AE, Mitchell S, et al. (2010) Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s.. Mol Biol Evol 27: 1117–1125.
[10]
Djogbénou L, Noel V, Agnew P (2010) Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malaria J 9: 12.
[11]
Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? Plos Path 6: e1001000.
[12]
Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M (2002) High Wolbachia density in insecticide?resistant mosquitoes. Proc R Soc Lond B Biol Sci 269: 1413–1416.
[13]
Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y (2004) Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution 58: 579–586.
[14]
Duron O, Labbé P, Berticat C, Rousset F, Guillot S, et al. (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60: 303–314.
[15]
McCarroll L, Hemingway J (2002) Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochem Mol Biol 32: 1345–1351.
[16]
Howard AF, Koenraadt CJM, Farenhorst M, Knols BGJ, Takken W (2010) Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malaria J 9: 168.
[17]
Vezilier J, Nicot A, Gandon S, Rivero A (2010) Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum. Malaria J 9: 379.
[18]
Hurd H, Carter V (2004) The role of programmed cell death in Plasmodium-mosquito interactions. Intl J Parasitol 34: 1459–1472.
[19]
Vlachou D, Zimmermann T, Cantera R, Janse CJ, Waters AP, et al. (2004) Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cellular Microbiol 6: 671–685.
[20]
Lambrechts L, Morlais I, Awono-Ambene PH, Cohuet A, Simard F, et al. (2007) Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae. Am J Trop Med Hyg 76: 475–480.
[21]
Aguilar R, Dong Y, Warr E, Dimopoulos G (2005) Anopheles infection responses; laboratory models versus field malaria transmission systems. Acta Trop 95: 285–291.
[22]
Cohuet A, Osta M, Morlais I, Awono-Ambene PH, Michel K, et al. (2006) Anopheles and Plasmodium: from laboratory models to natural systems in the field. EMBO reports 7: 1285–1289.
[23]
Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, et al. (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. Plos Path 2: e52.
[24]
Shute GT (1956) A method of maintaining colonies of East African strains of Anopheles gambiae. Ann Trop Med Parasitol 50: 92–94.
[25]
Djogbénou L, Weill M, Hougard JM, Raymond M, Akogbéto M, et al. (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44: 805–810.
[26]
Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 79: 41–47.
[27]
Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V (2002) A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298: 1415–1418.
[28]
Petrarca V, Beier C (1992) Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya Am. J. Trop. Med. Hyg. 46: 229–237.
[29]
Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, et al. (2009) Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol 9: 16.
[30]
Weetman D, Wilding CS, Steen K, Morgan JC, Simard F, et al. (2010) Association mapping of insecticide resistance in wild Anopheles gambiae populations: Major variants identified in a low-linkage disequilibrium genome. Plos One 5: e13140.
[31]
WHO (1998) Test procedures for insecticides resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides treated surfaces. Available: http://www.who.int/malaria/publications/?atoz/who_cds_cpc_mal_98_12/en/index.html.
[32]
Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, et al. (2004) The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 13: 1–7.
[33]
Gouagna LC, Bonnet S, Gounoue R, Verhave JP, Eling W, et al. (2004) Stage-specific effects of host plasma factors on the early sporogony of autologous Plasmodium falciparum isolates within Anopheles gambiae. Trop Med Intl health 9: 937–948.
[34]
Van Handel E, Day JF (1989) Correlation between wing length and protein. J Am Mosq Control Assoc 5: 180–182.
[35]
Morassin B, Fabre R, Berry A, Magnaval JF (2002) One year’s experience with the polymerase chain reaction as a routine method for diagnosis of imported malaria. Am J Trop Med Hyg 66: 503–508.
[36]
Shokoples SE, Ndao M, Kowalewska-Grochowska K, Yanow SK (2009) Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections. J Clin Microbiol 47: 975–980.
[37]
Diallo A, Ndam NT, Moussiliou A, Dos Santos S, Ndonky A, et al. (2012) Asymptomatic carriage of Plasmodium in urban Dakar: the risk of malaria should not be underestimated. Plos One 7: e31100.
[38]
Snounou G, Pinheiro L, Gon?alves A, Fonseca L, Dias F, et al. (1993) The importance of sensitive detection of malaria parasites in the human and insect hosts in epidemiological studies, as shown by the analysis of field samples from Guinea Bissau. Trans R Soc Trop Med Hyg 87: 649–653.
[39]
Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, et al. (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315–320.
[40]
Sandeu M, Moussiliou A, Moiroux N, Padonou G, Massougbodji A, et al. (2012) Optimized pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors. Plos One 7: e52719.
[41]
Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. Available: http://cran.r-project.org/package=lme4.
[42]
Kuznetsova A, Brockhoff PB (2012) MixMod: Analysis of Mixed Models. Available: http://cran.r-project.org/package=MixMod.
[43]
Sinden RE, Dawes EJ, Alavi Y, Waldock J, Finney O, et al. (2007) Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. PLoS Pathog 3: e195.
[44]
Vaughan JA (2007) Population dynamics of Plasmodium sporogony. Trends Parasitol 23: 63–70.
[45]
Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B (2012) Generalized Linear Mixed Models using AD Model Builder.
[46]
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24: 127–135.
[47]
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in Ecology with R. Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W, editors Springer.
[48]
Lambrechts L, Halbert J, Durand P, Gouagna LC, Koella JC (2005) Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Insect Mol Biol 4: 3.
[49]
Ferguson HM, Read AF (2002) Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 18: 256–261.
[50]
Vontas J, Blass C, Koutsos A C, David J-P, Kafatos FC, et al. (2005) Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14: 509–521.
[51]
Dimopoulos G, Richman A, Müuller H-M, Kafatos FC (1997) Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. PNAS 94: 11508–11513.
[52]
Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, et al. (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9: 75–84.
[53]
Roxstr?m-Lindquist K, Assefaw-Redda Y, Rosinska K, Faye I (2005) 20-Hydroxyecdysone indirectly regulates Hemolin gene expression in Hyalophora cecropia. Insect Mol Biol 14: 645–652.
[54]
Harris C, Morlais I, Churcher TS, Awono-Ambene P, Gouagna LC, et al. (2012) Plasmodium falciparum produce lower infection intensities in local versus foreign Anopheles gambiae populations. Plos One 7: e30849.
[55]
Churcher TS, Blagborough AM, Delves M, Ramakrishnan C, Kapulu MC, et al. (2012) Measuring the blockade of malaria transmission - An analysis of the Standard Membrane Feeding Assay. Intl J Parasitol 42: 1037–1044.
[56]
Harris C, Lambrechts L, Rousset F, Abate L, Nsango SE, et al.. (2010) Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum. Plos Path 6.
[57]
Mendes AM, Awono-Ambene PH, Nsango SE, Cohuet A, Fontenille D, et al. (2011) Infection intensity-dependent responses of Anopheles gambiae to the African malaria parasite Plasmodium falciparum. Infect Immun 79: 4708–4715.
[58]
Ahmed AM, Baggott SL, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 3: 371–377.
[59]
MacDonald G (1957) The epidemiology and control of malaria. London: Oxford University Press.
[60]
Djegbe I, Cornelie S, Rossignol M, Demettre E, Seveno M, et al. (2011) Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus. Plos One 6: e17496.
[61]
Dabiré KR, Diabaté A, Namontougou M, Djogbenou L, Kengne P, et al. (2009) Distribution of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae s.l. populations from Burkina Faso (West Africa). Trop Med Intl Health 14: 396–403.
[62]
Dabiré KR, Diabaté A, Namountougou M, Toé KH, Ouari A, et al. (2009) Distribution of pyrethroid and DDT resistance and the L1014F kdr mutation in Anopheles gambiae s.l. from Burkina Faso (West Africa). Trans R Soc Trop Med Hyg 103: 1113–1120.
[63]
Rehman H, Mohan A, Tabassum H, Ahmad F, Rahman S, et al. (2011) Deltamethrin Increases Candida albicans infection susceptibility in mice. Scand J Immunol 73: 459–464.
Chandre F, Darriet F, Duchon S, Finot L, Manguin S, et al. (2000) Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae. Med Vet Entomol 14: 81–88.
[66]
Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, et al. (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27: 91–98.