全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Genetic Analysis and QTL Mapping of Seed Coat Color in Sesame (Sesamum indicum L.)

DOI: 10.1371/journal.pone.0063898

Full-Text   Cite this paper   Add to My Lib

Abstract:

Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%–69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS).

References

[1]  Ashri A (1998) Sesame Breeding. In: Janick J, editor. Plant Breeding Reviews. Oxford: Oxford 179–228.
[2]  Budowski P, Markley KS (1951) The chemical and physiological properties of sesame oil. Chem Rev 48 (1): 125–151.
[3]  Nakimi M (1995) The chemistry and physiological functions of sesame. Food Rev Int 11(2): 281–329.
[4]  Kanu PJ (2011) Biochemical analysis of black and white Sesame seeds from China. Am J Biochem Mol Biol 1: 145–157.
[5]  Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99: 478–483.
[6]  El-Bramawy MAES, El-Hendawy SES, Amin Shaban WI (2008) Assessing the suitability of morphological and phenological traits to screen Sesame genotypes for Fusarium wilt and charcoal rot disease resistance. J Plant Protect Res 48: 397–410.
[7]  Zhang HY, Miao HM, Li C, Wei LB, Ma Q (2012) Analysis of Sesame karyotype and resemblance-near coefficient. Chin Bull Bot. In press.
[8]  Nohara S (1933) Genetical studies in Sesamum indicum, L. J Coll Agric, Tokyo Imp Univ. 12: 227–386.
[9]  Sikka S, Gupta N (1947) Inheritance studies in Sesamum orientale L. Indian J Genet and Pl Breed. 7: 35–52.
[10]  Gutierrez E, Monteverde E, Quijada P (1994) Inheritance of seed coat color and number of locules per capsule in three cultivars of sesame Sesamun indicum L. Agronomia Tropical 44.
[11]  Baydar H, Turgut I (2000) Studies on genetics and breeding of sesame (Sesamum indicum L.) I. Inheritance of the characters determining the plant type. Turk J Biol 24: 503–512.
[12]  Falusi O (2010) Segregation of genes controlling seed colour in sesame (Sesamum indicum linn.) from Nigeria. Afr J Biotech 6.
[13]  Li YS, Zhu Z, Zhang YD, Zhao L, Wang CL (2008) Genetic analysis of Rice false smut resistance using mixed major genes and polygenes inheritance model. Acta Agron Sin 34(10): 1728–1733.
[14]  Zheng WJ, Liu ZH, Zhao JM, Chen WF (2012) Genetic analysis of stripe disease resistance in Rice restorer line C224 using major gene plus polygene mixed effect model. Rice Sci 19(3): 202–206.
[15]  Nandi S, Subudhi P, Senadhira D, Manigbas N, Sen-Mandi S, et al. (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255: 1–8.
[16]  Isemura T, Kaga A, Tabata S, Somta P, Srinives P, et al.. (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in Mungbean (Vigna radiata). PLoS ONE 7(8): e41304. DOI 10.1371/journal. pone. 0041304.
[17]  Wei LB, Zhang HY, Zheng YZ, Miao HM, Zhang TZ, et al. (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genom 31: 199–208.
[18]  Zhang HY, Wei LB, Miao HM, Zhang TD, Wang CY (2012) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics DOI 10.1186/1471–2164–13–316.
[19]  Gai JY, Wang JK (1998) Identification and estimation of a QTL model and its effects. Theor Appl Genet 97: 1162–1168.
[20]  Gai JY, Zhang YM, Wang JK (2003) Genetic system of quantitative traits in plants. Beijing: Science Press: 120–126.
[21]  Gai J, Wang Y, Wu X, Chen S (2007) A comparative study on segregation analysis and QTL mapping of quantitative traits in plants–with a case in soybean. Frontiers Agr China 1: 1–7.
[22]  Zhang YM, Gai J (2009) Methodologies for segregation analysis and QTL mapping in plants. Genetica 136: 311–318.
[23]  Zhang YM, Gai JY, Qi CK (2001) The precision of segregating analysis of quantitative trait and its improving methods. Acta Agron Sinica 27: 787–793.
[24]  Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11: 122–127.
[25]  Van Ooijen J, Voorrips R (2001) JoinMap? 3.0, Software for the calculation of genetic linkage maps. Plant Res Int Wageningen, The Netherlands 1–51.
[26]  Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159: 1701–1716.
[27]  Postlethwait JH, Johnson SL, Midson CN, Talbot WS, Gates M, et al. (1994) A genetic linkage map for the zebrafish. Science 264: 699–703.
[28]  Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.
[29]  Yang J, Hu C, Hu H, Yu R, Xia Z, et al. (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24: 721–723.
[30]  Wang S, Basten C, Zeng Z (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart?.htm).
[31]  Jiang C, Zeng ZB (1997) Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101: 47–58.
[32]  He F, He L, Hou L, Liu J (1994) Karyotype as related to phylogenesis in sesame. J Southwest Agric Univ 16(6): 573–576.
[33]  Li JS, Shen HL, Shi ZQ (2006) Analysis on the major gene and polygene mixed inheritance of lycopene content in fresh consumptive tomato fruit. Hereditas (Beijing), 2006 28(4): 458–462.
[34]  Luo X, Si L, Yin W (2008) Inheritance on major gene plus polygenes of yellow line and fruit length ratio of cucumber. Acta Agr Boreali-Sinica 23: 288–291.
[35]  Tian LS, Niu YZ, Yu QQ, Guo SX, Liu L (2009) Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agr Sinica. 42: 3987–3995.
[36]  Wei X, Li L, Wang J, Fan Q, Lan H, et al. (2008) Quantitative genetic analysis of silk cut in maize (Zea mays L.). Sci Agr Sinica 41: 2235–2240.
[37]  Vos P, Hogers R, Bleeker M, Reijans M, van de lee T, et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.
[38]  Negi M, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet 101: 146–152.
[39]  Faure S, Noyer J, Horry J, Bakry F, Lanaud C, et al. (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87: 517–526.
[40]  Tanksley SD, Miller J, Paterson A, Bernatzky R (1988) Molecular mapping of plant chromosomes. Plenum Press, New York 157–173.
[41]  Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M, et al. (1999) Segregation distortion for AFLP markers in Cryptomeria japonica. Genes Genet Syst 74: 55–59.
[42]  Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, et al. (2001) An amplified fragment length polymorphism map of the silkworm. Genetics 157: 1277–1284.
[43]  Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249: 65–73.
[44]  Castiglioni P, Ajmone-Marsan P, Van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditsribution. Theor Appl Genet 99: 425–431.
[45]  Bert P, Charmet G, Sourdille P, Hayward M, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99: 445–452.
[46]  Haanstra J, Wye C, Verbakel H, Meijer-Dekens F, Van den Berg P, et al. (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum× L. pennellii F2 populations. Theor Appl Genet 99: 254–271.
[47]  van Eck HJ, van der VoortJR, Draaistra J, van Zandvoort P, van Enckevort E, et al. (1995) The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breeding 1: 397–410.
[48]  Marques C, Araujo J, Ferreira J, Whetten R, O’malley D, et al. (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96: 727–737.
[49]  Monforte A, Oliver M, Gonzalo M, Alvarez J, Dolcet-Sanjuan R, et al. (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108: 750–758.
[50]  Njiti V, Meksem K, Iqbal M, Johnson J, Kassem MA, et al. (2002) Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet 104: 294–300.
[51]  Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, et al. (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112: 243–250.
[52]  Saeidi G, Rowland G (1997) The inheritance of variegated seed color and palmitic acid in flax. J Hered 88: 466–468.
[53]  McKay J (1936) Factor interaction in Citrullus. J Hered 27: 110–112.
[54]  Durst CE (1930) Inheritance in lettuce. Bull Ill Agric Exp Stn 356: 239–341.
[55]  Vandenberg A, Slinkard A (1990) Genetics of seed coat color and pattern in lentil. J Hered 81: 484–488.
[56]  Swenson S (1942) Inheritance of seed color in biennial white sweetclover, Melilotus alba. J Am Soc Agron 34: 452–459.
[57]  McCallum J, Timmerman-Vaughan G, Frew T, Russell A (1997) Biochemical and genetic linkage analysis of green seed color in field pea. J Am Soc Hortic Sci 122: 218–225.
[58]  Zewdie Y, Bosland P (2003) Inheritance of seed color in Capsicum. J Hered 94: 355–357.
[59]  He XH, Xu CW, Kuai JM, Gu SL, Li T (2001) Principal factors affecting the power of detection and accuracy of QTL mapping. Acta Agron Sin 27(4): 469–475.
[60]  Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, et al. (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69(5): 553–63.
[61]  Sagasser M, Lu GH, Hahlbrock K, Weisshaar B (2002) A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 16: 138–149.
[62]  Gillman JD, Tetlow A, Lee JD, Shannon JG, Bilyeu K. (2011) Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol DOI 10.1186/1471–2229–11–155.
[63]  El-Bramawy MAES (2006) Inheritance of resistance to Fusarium wilt in some sesame crosses under field conditions. Plant Prot Sci 42: 99–105.
[64]  Zhang HY, Miao HM, Wang L, Qu LB, Liu HY, et al. (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biology. 14: 401.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133