全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Traffic of Secondary Metabolites to Cell Surface in the Red Alga Laurencia dendroidea Depends on a Two-Step Transport by the Cytoskeleton

DOI: 10.1371/journal.pone.0063929

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Laurencia dendroidea, halogenated secondary metabolites are primarily located in the vacuole named the corps en cerise (CC). For chemical defence at the surface level, these metabolites are intracellularly mobilised through vesicle transport from the CC to the cell periphery for posterior exocytosis of these chemicals. The cell structures involved in this specific vesicle traffic as well as the cellular structures related to the positioning and anchoring of the CC within the cell are not well known. Here, we aimed to investigate the role of cytoskeletal elements in both processes. Cellular and molecular assays were conducted to i) determine the ultrastructural apparatus involved in the vesicle traffic, ii) localise cytoskeletal filaments, iii) evaluate the role of different cytoskeletal filaments in the vesicle transport, iv) identify the cytoskeletal filaments responsible for the positioning and anchoring of the CC, and v) identify the transcripts related to cytoskeletal activity and vesicle transport. Our results show that microfilaments are found within the connections linking the CC to the cell periphery, playing an essential role in the vesicle traffic at these connections, which means a first step of the secondary metabolites transport to the cell surface. After that, the microtubules work in the positioning of the vesicles along the cell periphery towards specific regions where exocytosis takes place, which corresponds to the second step of the secondary metabolites transport to the cell surface. In addition, microtubules are involved in anchoring and positioning the CC to the cell periphery. Transcriptomic analysis revealed the expression of genes coding for actin filaments, microtubules, motor proteins and cytoskeletal accessory proteins. Genes related to vesicle traffic, exocytosis and membrane recycling were also identified. Our findings show, for the first time, that actin microfilaments and microtubules play an underlying cellular role in the chemical defence of red algae.

References

[1]  Blunt JW, Copp BR, Keyzers RA, Robert A, Munro MHG, et al. (2012) Marine natural products. Nat Prod Rep 29: 144–222.
[2]  Paul VJ, Kuffner IB, Walters LJ, Ritson-Williams R, Beach KS, et al. (2011) Chemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides. Mar Ecol Prog Ser 426: 161–170.
[3]  Nylund GM, Gribben PE, De Nys R, Pavia H (2007) Surface chemistry versus whole-cell extracts: antifouling tests with seaweed metabolites. Mar Ecol Prog Ser 329: 73–84.
[4]  Bianco EM, Teixeira VL, Pereira RC (2010) Chemical defenses of the tropical marine seaweed Canistrocarpus cervicornis against herbivory by sea urchin. Braz J Oceanogr 58: 213–218.
[5]  Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43: 1–91.
[6]  Erickson KL (1983) Chemical and biological perspectives. In: Scheuer P J, editor. Marine natural products. (ed.), New York: Academic Press, 131–257.
[7]  Cassano V, Yola M, Millar AJK, Gil-Rodriguez MC, Senties A, et al. (2012) Redefining the taxonomic status of Laurencia dendroidea (Ceramiales, Rhodophyta) from Brazil and the Canary Islands. Eur J Phycol 47: 67–81.
[8]  Da Gama BAP, Carvalho AGV, Weidner K, Soares AR, Coutinho R, et al. (2008) Antifouling activity of natural products from Brazilian seaweeds. Bot Mar 51: 191–201.
[9]  Da Gama BAP, Pereira RC, Carvalho AGV, Coutinho R, Yoneshigue-Valentin Y (2002) The effects of seaweed secondary metabolites on biofouling. Biofouling 18: 13–20.
[10]  Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the brazilian red seaweed Laurencia dendroidea. Braz J Biol 63: 665–672.
[11]  Amsler CD (2008) Algal chemical ecology. Springer 313p.
[12]  Hay ME (2009) Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1: 193–212.
[13]  Paul VJ, Ritson-Williams R, Sharp K (2011) Marine chemical ecology in benthic environments. Nat Prod Rep 28: 345–387.
[14]  Pelletreau KN, Targett NM (2008) New perspectives for addressing patterns of secondary metabolites in marine macroalgae. In: Amsler CD, editor. Algal chemical ecology. New York: Springer. pp. 121–146.
[15]  Pereira RC, Da Gama BAP (2008) Macroalgal chemical defenses and their roles in structuring tropical marine communities. In: Amsler CD, editor., Algal chemical ecology. New York: Springer. pp. 25–55.
[16]  Paul NA, Cole L, De Nys R, Steinberg PD (2006) Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). J Phycol 42: 637–645.
[17]  Dworjanyn SA, De Nys R, Steinberg PD (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar Biol 133: 727–736.
[18]  Young DN, Howard BN, Fenical W (1980) Subcellular localization of brominated secondary metabolites in the red alga Laurencia snyderae. J Phycol 16 182–185.
[19]  Salgado LT, Viana NB, Andrade LR, Leal RN, Da Gama BAP, et al. (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia dendroidea. J Struct Biol 162: 345–355.
[20]  Sudatti DB, Rodrigues SV, Coutinho R, Da Gama BAP, Salgado LT, et al. (2008) Transport and defensive role of elatol at the surface of the red seaweed Laurencia dendroidea (Ceramiales, Rhodophyta). J Phycol 44: 584–591.
[21]  Paradas WC, Salgado LT, Sudatti DB, Crapez MA, Fujii MT, et al. (2010) Induction of halogenated vesicle transport in cells of the red seaweed Laurencia obtusa. Biofouling 26: 277–286.
[22]  Steinberg PD, De Nys R (2002) Chemical mediation of colonization of seaweeds surfaces. J Phycol 38: 621–629.
[23]  Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, et al. (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci USA 106: 7314–7319.
[24]  Schoenwaelder MEA, Clayton MN (1999) The role of the cytoskeleton in brown alga physode movement. Eur J Phycol 34: 223–229.
[25]  Wilson SM, Pickett-Heaps JD, West JA (2006) Vesicle transport and the cytoskeleton in the unicellular red alga Glaucosphaera vacuolata.. Phycol Res 54: 15–20.
[26]  Russell CA, Guiry MD, McDonald AR, Garbary DJ (1996) Actin-mediated chloroplast movement in Griff?thsia pacifica (Ceramiales, Rhodophyta). Phycol Res 44: 57–61.
[27]  Von Stosch H (1963) Wirkungen von Jod und Arsenit auf Meeresalgen in Kultur, In: De Virville D, Feldmann J, editors. Proceedings of the Fourth International Seaweed Symposium. Oxford: Pergamon Press. pp. 142–150.
[28]  Lewin J (1966) Silicon metabolism in diatoms. V. Germanium dioxide, an especific inhibitor of diatom growth. Phycologia 6: 1–12.
[29]  Oliveira EO, Paula EJ, Plastino EM, Petti R (1995) Metodologias para cultivo no axênico de macroalgas marinas in vitro, In: Alveal K, Ferrario ME, Oliveira EC, Sar E, editors. Manual de métodos ficológicos. Chile: Universidad de Concepción. pp. 430–447.
[30]  Abramoff MD, Magalh?es PJ, Ram SJ (2004) Image processing with ImageJ. J Biophotonics 11: 36–42.
[31]  Pontes B, Viana NB, Salgado LT, Farina M, Moura Neto M, et al. (2011) Cell cytoskeleton and tether extraction. Biophys J 101: 43–52.
[32]  Falc?o VR, Tonon AP, Oliveira MC, Colepicolo P (2008) RNA Isolation method for polysaccharide rich algae: Agar producing Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 20: 9–12.
[33]  Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors Nature. 437: 376–380.
[34]  Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863–864.
[35]  Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9: 386–393.
[36]  Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580: 1183–1191.
[37]  Manning SR, La Claire JW (2010) Prymnesins: Toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 8: 978–704.
[38]  Ragan MA (1976) Physodes and the phenolic compounds of brown algae. Composition and significance of physodes in vivo. Botanica Marina 19: 145–154.
[39]  Salgado LT, Andrade LR, Amado-Filho GM (2005) Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation. Protoplasma 225: 123–128.
[40]  Kaur I, Vijayaraghavan MR (1992) Physode distribution and genesis in Sargassum vulgare C. Agardh and Sargassum johnstonii Setchell & Gardner. Aquat Bot 42: 375–384.
[41]  Schoenwaelder MEA, Wiencke C (2000) Phenolic compounds in the embryo development of several northern hemisphere Fucoids. Plant Biol 2: 24–33.
[42]  Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory–the first microscopic study. Planta 218: 928–937.
[43]  Pellegrini L (1980) Cytological studies on physodes in the vegetative cells of Cystoseira stricta Savageau (Phaeophyta, Fucales) J Cell Sci. 41: 209–231.
[44]  Brawley SH (1976) Fine-structural studies of the gametes and embryo of Fucus vesiculosus L. (Phaeophyta), J Cell Sci. 20: 255–271.
[45]  Kim SH, Kim GH (1999) The role of F-actin during fertilization in the red alga Aglaothamnion oosumiense (Rhodophyta) J Phycol. 35: 806–814.
[46]  Ackland JC, West JA, Pickett-Heaps J (2007) Actin and myosin regulate pseudopodia of Porphyra pulchella (Rhodophyta) archeospores. J Phycol 43: 129–138.
[47]  Hou G, Kramer VL, Wang YS, Chen R, Perbal G, et al. (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39: 113–125.
[48]  Petrá?ek J, Schwarzerová K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12: 728–734.
[49]  Day B, Henty JL, Porter KJ, Staiger CJ (2011) The Pathogen-Actin Connection: A Platform for Defense Signaling in Plants. Phytopathology 49: 483–506.
[50]  Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant–microbe interactions. Physiol Mol Plant Path 71: 135–148.
[51]  Bayoudh S, Mehta M, Rubinsztein-Dunlop H, Heckenberg NR, Critchley C (2001) Micromanipulation of chloroplasts using optical tweezers. J Microsc 203: 214–222.
[52]  Grabski S, Xie XG, Holland JE, Schindler M (1994) Lipids Trigger Changes in the Elasticity of the Cytoskeleton in Plant Cells: A Cell Optical Displacement Assay for Live Cell Measurements. J Cell Biol 126: 713–726.
[53]  Hawes C, Osterrieder A, Sparkes IA, Ketelaar T (2010) Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Curr Opin Plant Biol 13: 731–735.
[54]  Lee H, Lee HK, An G, Lee YK (2007) Analysis of Expressed Sequence Tags from the Red Alga Griffithsia okiensis. J Microbiol 45: 541–546.
[55]  Xiaolei F, Yongjun F, Songnian H, Guangce W (2007) Generation and analysis of 5318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J Phycol 43: 1287–1294.
[56]  Collén PN, Collén J, Da Silva Reis M, Pedersén M, Setubal JC, et al. (2012) Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 24: 641–647.
[57]  Wong PF, Tan LJ, Nawi H, Abu Bakar S (2006) Proteomics of the red alga, Gracilaria changii (Gracilariales, Rhodophyta). J Phycol 42: 113–120.
[58]  Teo SS, Ho CL, Teoh S, Lee WW, Tee JM, et al. (2007) Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta).Eur J Phycol. 42: 41–46.
[59]  Dittami SM, Scornet D, Petit JL, Ségurens B, Da Silva C, et al. (2009) Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol 10: R66.
[60]  Ho CL, Teo HS, Teo SS, Rahim RA, Phang SM (2009) Profiling the transcriptome of Gracilaria changii (Rhodophyta) in response to light deprivation. Mar Biotechnol 11: 513–519.
[61]  Kostamo K, Olsson S, Korpelainen H (2011) Search for stress-responsive genes in the red alga Furcellaria lumbricalis (Rhodophyta) by expressed sequence tag analysis. J Exp Mar Biol Ecol 404: 21–25.
[62]  Yotsukura N, Nagai K, Kimura H, Morimoto K (2010) Seasonal changes in proteomic profiles of Japanese kelp: Saccharina japonica (Laminariales, Phaeophyceae),J Appl Phycol. 22: 443–451.
[63]  ?ársky V, Cvrcková F, Potocky M, Hála M (2009) Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytol 183: 255–272.
[64]  Li L, Saga N, Mikami K (2008) Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis. J Exp Bot 59: 3575–3586.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133