全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids

DOI: 10.1371/journal.pone.0065014

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biological fluids fulfill key functionalities such as hydrating, protecting, and nourishing cells and tissues in various organ systems. They are capable of these versatile tasks owing to their distinct structural and viscoelastic properties. Characterizing the viscoelastic properties of bio-fluids is of pivotal importance for monitoring the development of certain pathologies as well as engineering synthetic replacements. Laser Speckle Rheology (LSR) is a novel optical technology that enables mechanical evaluation of tissue. In LSR, a coherent laser beam illuminates the tissue and temporal speckle intensity fluctuations are analyzed to evaluate mechanical properties. The rate of temporal speckle fluctuations is, however, influenced by both optical and mechanical properties of tissue. Therefore, in this paper, we develop and validate an approach to estimate and compensate for the contributions of light scattering to speckle dynamics and demonstrate the capability of LSR for the accurate extraction of viscoelastic moduli in phantom samples and biological fluids of varying optical and mechanical properties.

References

[1]  Tuchin VV (2002) Handbook of optical biomedical diagnostics. Bellingham, Wash.: SPIE Press.
[2]  Assunta B, Luigi A, Paolo N, Luigi N (2003) Rheology of Biological Fluids and Their Substitutes. Tissue Engineering And Novel Delivery Systems: CRC Press.
[3]  Lai SK, Wang YY, Wirtz D, Hanes J (2009) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61: 86–100.
[4]  Schurz J, Ribitsch V (1987) Rheology of synovial fluid. Biorheology 24: 385–399.
[5]  Fam H, Bryant JT, Kontopoulou M (2007) Rheological properties of synovial fluids. Biorheology 44: 59–74.
[6]  Sharif-Kashani P, Hubschman JP, Sassoon D, Kavehpour HP (2010) Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. J Biomech 44: 419–423.
[7]  Nickerson CS, Park J, Kornfield JA, Karageozian H (2008) Rheological properties of the vitreous and the role of hyaluronic acid. J Biomech 41: 1840–1846.
[8]  Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS (2007) The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci U S A 104: 6194–6199.
[9]  Divine JG, Zazulak BT, Hewett TE (2007) Viscosupplementation for knee osteoarthritis: a systematic review. Clin Orthop Relat Res 455: 113–122.
[10]  Lee B, Litt M, Buchsbaum G (1992) Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology 29: 521–533.
[11]  Meyers MA, Chawla KK (1999) Mechanical behavior of materials. Upper Saddle River, NJ: Prentice Hall.
[12]  Hajjarian Z, Nadkarni SK (2012) Evaluating the viscoelastic properties of tissue from laser speckle fluctuations. Sci Rep 2: 316.
[13]  Nadkarni SK, Bouma BE, Helg T, Chan R, Halpern E, et al. (2005) Characterization of atherosclerotic plaques by laser speckle imaging. Circulation 112: 885–892.
[14]  Nadkarni SK, Bilenca A, Bouma BE, Tearney GJ (2006) Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images. J Biomed Opt 11: 21006.
[15]  Nadkarni SK, Bouma BE, Yelin D, Gulati A, Tearney GJ (2008) Laser speckle imaging of atherosclerotic plaques through optical fiber bundles. J Biomed Opt 13: 054016.
[16]  Hajjarian Z, Xi J, Jaffer FA, Tearney GJ, Nadkarni SK (2011) Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall. J Biomed Opt 16: 026005.
[17]  Weitz DA, Pine DJ (1993) Diffusing-Wave Spectroscopy. In: Brown W, editor. Dynamic Light Scattering. New York: Oxford Univ. Press.
[18]  Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelasticity moduli of complex fluids. Phys Rev Lett 74: 1250–1253.
[19]  Mason TG, Gang H, Weitz DA (1997) Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids. J Opt Soc Am A 14: 139–149.
[20]  Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica Acta 39: 371–378.
[21]  Berne BJ, Pecora R (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics: Dover Publications.
[22]  Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E Stat Nonlin Soft Matter Phys 65: 051505.
[23]  Dasgupta BR, Weitz DA (2005) Microrheology of cross-linked polyacrylamide networks. Phys Rev E Stat Nonlin Soft Matter Phys 71: 021504.
[24]  Datta SS, Gerrard DD, Rhodes TS, Mason TG, Weitz DA (2011) Rheology of attractive emulsions. Phys Rev E Stat Nonlin Soft Matter Phys 84: 041404.
[25]  Wu J, Dai LL (2007) Apparent Microrheology of Oil-Water Interfaces by Single-Particle Tracking. Langmuir 23: 4324–4331.
[26]  Moschakis T, Murray BS, Dickinson E (2010) On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology. J Colloid Interface Sci 345: 278–285.
[27]  Maret G, Wolf PE (1987) Multiple light scattering from disordered media. The effect of brownian motion of scatterers. Z Phys B 65: 409–414.
[28]  Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60: 1134–1137.
[29]  Ullah H, Davoudi B, Mariampillai A, Hussain G, Ikram M, et al. (2012) Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography. Laser Phys 22: 797–804.
[30]  Ullah H, Mariampillai A, Ikram M, Vitkin IA (2011) Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood? Laser Phys 21: 1962–1971.
[31]  Cardinaux F, Cipelletti L, Scheffold F, Schurtenberger P (2002) Micreorheology of giant-micelle solutions. Europhys Lett 57: 738–744.
[32]  Brown W (1993) Dynamic light scattering : the method and some applications. Oxford: Clarendon Press.
[33]  Bizheva KK, Siegel AM, Boas DA (1998) Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy. Phys Rev E 58: 7664–7667.
[34]  Boas DA, Nishimura G, Yodh AG (1999) Diffusing temporal light correlation for burn diagnosis. SPIE 2979: 468–474.
[35]  Boas DA, Yodh AG (1997) Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J Opt Soc Am A 14: 192–215.
[36]  Balucani U, Vallauri R, Gaskell T (1990) Generalized Stokes-Einstein Relation. Berichte der Bunsengesellschaft für physikalische Chemie 94: 261–264.
[37]  Mason TG (1999) New fundamental concepts in emulsion rheology. Curr Opin Colloid Interface Sci 4: 231–238.
[38]  Chen DT, Weeks ER, Crocker JC, Islam MF, Verma R, et al. (2003) Rheological microscopy: local mechanical properties from microrheology. Phys Rev Lett 90: 108301.
[39]  Jonas M, Huang H, Kamm RD, So PT (2008) Fast fluorescence laser tracking microrheometry. I: instrument development. Biophys J 94: 1459–1469.
[40]  Jonas M, Huang H, Kamm RD, So PT (2008) Fast fluorescence laser tracking microrheometry, II: quantitative studies of cytoskeletal mechanotransduction. Biophys J 95: 895–909.
[41]  Levine AJ, Lubensky TC (2000) One- and two-particle microrheology. Phys Rev Lett 85: 1774–1777.
[42]  Wax A, Yang C, Dasari RR, Feld MS (2001) Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering. Appl Opt 40: 4222–4227.
[43]  Middleton AA, Fisher DS (1991) Discrete scatterers and autocorrelations of multiply scattered light. Phys Rev B Condens Matter 43: 5934–5938.
[44]  Pecora R (1985) Dynamic light scattering : applications of photon correlation spectroscopy. New York: Plenum Press.
[45]  Cohen-Addad S, Hohler R (2001) Bubble Dynamics Relaxation in Aqueous Foam Probed by Multispeckle Diffusing-Wave Spectroscopy. Phys Rev Lett 86: 4700–4703.
[46]  Klose AD, Hielscher AH, Hanson KM, Beuthan J (1998) Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis. Proc SPIE 3566: 151–160.
[47]  Harden JL, Viasnoff V (2001) Recent advances in DWS-based micro-rheology. Curr Opin Colloid Interface Sci 6: 438–445.
[48]  Pine DJ, Weitz DA, Zhu JX, Herbolzheimer E (1990) Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit. J Phys France 51: 2101–2127.
[49]  Cipelletti L, Weitz DA (1999) Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator. Rev Sci Instrum 70: 3214–3221.
[50]  Schmitt JM, Zhou GX, Walker EC, Wall RT (1990) Multilayer model of photon diffusion in skin. J Opt Soc Am A 7: 2141–2153.
[51]  Farrell TJ, Patterson MS, Wilson B (1992) A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys 19: 879–888.
[52]  Schmitt JM, Kumar G (1998) Optical scattering properties of soft tissue: a discrete particle model. Appl Opt 37: 2788–2797.
[53]  Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26: 2166–2185.
[54]  Groenhuis RA, Ferwerda HA, Ten Bosch JJ (1983) Scattering and absorption of turbid materials determined from reflection measurements. 1: theory. Appl Opt 22: 2456–2462.
[55]  Groenhuis RA, Ten Bosch JJ, Ferwerda HA (1983) Scattering and absorption of turbid materials determined from reflection measurements. 2: measuring method and calibration. Appl Opt 22: 2463–2467.
[56]  Wang LV, Wu H-i, Hazel M. Hussong Fund. (2007) Biomedical optics : principles and imaging. Hoboken, N.J.: Wiley-Interscience.
[57]  Cote D, Vitkin I (2005) Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations. Opt Express 13: 148–163.
[58]  Ramella-Roman J, Prahl S, Jacques S (2005) Three Monte Carlo programs of polarized light transport into scattering media: part I. Opt Express 13: 4420–4438.
[59]  Sakadzic S, Wang LV (2006) Correlation transfer and diffusion of ultrasound-modulated multiply scattered light. Phys Rev Lett 96: 163902.
[60]  Durian DJ (1995) Accuracy of diffusing-wave spectroscopy theories. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51: 3350–3358.
[61]  Lemieux PA, Vera MU, Durian DJ (1998) Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering. Phys Rev E 57: 4498–4515.
[62]  Goodman JW (2007) Speckle phenomena in optics : theory and applications. Englewood, Colo.: Roberts & Co.
[63]  Miller CC (1924) The Stokes-Einstein Law for Diffusion in Solution. Proc R Soc Lond A 106: 724–749.
[64]  McNeil LE, French RH (2000) Multiple scattering from rutile TiO2 particles. Acta Materialia 48: 4571–4576.
[65]  McNeil LE, Hanuska AR, French RH (2001) Orientation dependence in near-field scattering from TiO(2) particles. Appl Opt 40: 3726–3736.
[66]  Diebold U, Ruzycki N, Herman GS, Selloni A (2003) One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal Today 85: 93–100.
[67]  Mugnai A, Wiscombe WJ (1980) Scattering of Radiation by Moderately Nonspherical Particles. J Atmospheric Sci 37: 1291–1307.
[68]  Pinnick RG, Carroll DE, Hofmann DJ (1976) Polarized light scattered from monodisperse randomly oriented nonspherical aerosol particles: measurements. Appl Opt 15: 384–393.
[69]  MacKintosh FC, Zhu JX, Pine DJ, Weitz DA (1989) Polarization memory of multiply scattered light. Phys Rev B Condens Matter 40: 9342–9345.
[70]  Freund II, Kaveh M (1992) Comment on “Polarization memory of multiply scattered light”. Phys Rev B Condens Matter 45: 8162–8164.
[71]  MacKintosh FC, Zhu JX, Pine DJ, Weitz DA (1992) Reply to “Comment on ‘Polarization memory of multiply scattered light’”. Phys Rev B Condens Matter 45: 8165.
[72]  Viasnoff V, Lequeux F, Pine DJ (2002) Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics. Rev Sci Instrum 73: 2336–2344.
[73]  Gang H, Krall AH, Weitz DA (1995) Thermal fluctuations of the shapes of droplets in dense and compressed emulsions. Phys Rev E 52: 6289–6302.
[74]  Hielscher AH, Mourant JR, Bigio IJ (1997) Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions. Appl Opt 36: 125–135.
[75]  Bartel S, Hielscher AH (2000) Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media. Appl Opt 39: 1580–1588.
[76]  Giacomelli M, Zhu Y, Lee J, Wax A (2010) Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering. Opt Express 18: 14616–14626.
[77]  Giacomelli MG, Chalut KJ, Ostrander JH, Wax A (2008) Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering. Opt Lett 33: 2452–2454.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133