Objective Porcine acellular dermal matrices (ADM) have been widely used in experimental and clinical research for abdominal wall repair. Compared to porcine small intestinal submucosa (SIS), the effect of these matrices on the regenerative capacity of blood vessels is still not ideal. Multi-walled carbon nanotubes (MWNTs) can more effectively transport VEGF to cells or tissues because of their large specific surface area and interior cavity. In this study, we explored the safety and efficacy of implanted VEGF-loaded MWNT composite scaffolds in vitro and vivo to repair abdominal wall defects. Materials and Methods VEGF-loaded MWNTs were prepared by a modified plasma polymerization treatment. Four composite scaffolds were evaluated for cytotoxicity, proliferation, and release dynamics. We created 3 cm×4 cm abdominal wall defects in 43 Sprague-Dawley rats. After implantation times of 2, 4, 8, and 12 weeks, the scaffolds and the surrounding tissues were collected and examined by gross inspection, biomechanical testing, and histological examination. Results A 5–10 nm poly(lactic-co-glycolic acid) (PLGA) film was evenly distributed on MWNTs. The 3% MWNT composite group showed lower cytotoxicity and appropriate release performance, and it was thus tested in vivo. In rats with the 3% composite implanted, host cells were prevented from migrating to the ADM at 2 weeks, vascularization was established more rapidly at 12 weeks, and the values for both the maximum load and the elastic modulus were significantly lower than in the ADM-alone group (p<0.01). Histological staining revealed that the MWNT was still not completely eliminated 12 weeks after implantation. Conclusion MWNTs were able to carry VEGF to cells or tissues, and the 3% MWNT composite material showed lower cytotoxicity and had an appropriate release performance, which prompted faster vascularization of the ADM than other scaffolds. Nevertheless, the MWNTs induced harmful effects that should be carefully considered in biomedical studies.
References
[1]
Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ (2007) The phenomenon of infection with abdominal wall reconstruction. Biomaterials 28: 2314–2327.
[2]
Aasvang E, Kehlet H (2005) Chronic postoperative pain: the case of inguinal herniorrhaphy. Br J Anaesth 95: 69–76.
[3]
Thapa PB, Maharjan DK, Pudasaini S, Sharma SK (2009) Inguinal vasal obstruction following polypropylene mesh repair. JNMA J Nepal Med Assoc 48: 168–169.
[4]
Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133: 378–382.
[5]
Jacob BP, Hogle NJ, Durak E, Kim T, Fowler DL (2007) Tissue ingrowth and bowel adhesion formation in an animal comparative study: polypropylene versus Proceed versus Parietex Composite. Surg Endosc 21: 629–633.
[6]
Song Z, Peng Z, Liu Z, Yang J, Tang R, et al. (2013) Reconstruction of Abdominal Wall Musculofascial Defects with Small Intestinal Submucosa Scaffolds Seeded with Tenocytes in Rats. Tissue Eng Part A
[7]
Tan MY, Zhi W, Wei RQ, Huang YC, Zhou KP, et al. (2009) Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30: 3234–3240.
[8]
Patton JH Jr, Berry S, Kralovich KA (2007) Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. Am J Surg 193: 360–363 discussion 363.
[9]
Kim H, Bruen K, Vargo D (2006) Acellular dermal matrix in the management of high-risk abdominal wall defects. Am J Surg 192: 705–709.
[10]
Espinosa-de-los-Monteros A, de la Torre JI, Marrero I, Andrades P, Davis MR, et al. (2007) Utilization of human cadaveric acellular dermis for abdominal hernia reconstruction. Ann Plast Surg 58: 264–267.
[11]
Cobb GA, Shaffer J (2005) Cross-linked acellular porcine dermal collagen implant in laparoscopic ventral hernia repair: case-controlled study of operative variables and early complications. Int Surg 90: S24–29.
[12]
Liu Z, Tang R, Zhou Z, Song Z, Wang H, et al. (2011) Comparison of two porcine-derived materials for repairing abdominal wall defects in rats. PLoS One 6: e20520.
[13]
Zhang J, Wang GY, Xiao YP, Fan LY, Wang Q (2011) The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model. Biomaterials 32: 7086–7095.
[14]
Rao KD, Radha B, Smith KC, Fisher TS, Kulkarni GU (2013) Solution-processed soldering of carbon nanotubes for flexible electronics. Nanotechnology 24: 075301.
[15]
Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32: 6316–6323.
[16]
Stacey M, Osgood C, Kalluri BS, Cao W, Elsayed-Ali H, et al. (2011) Nanosecond pulse electrical fields used in conjunction with multi-wall carbon nanotubes as a potential tumor treatment. Biomed Mater 6: 011002.
[17]
Antoniadou EV, Cousins BG, Seifalian AM (2010) Development of conductive polymer with carbon nanotubes for regenerative medicine applications. Conf Proc IEEE Eng Med Biol Soc 2010: 815–818.
[18]
Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9: 674–679.
[19]
Felixlanao R, Jonker AM, Wolke J, Jansen JPD, van Hest JC, et al. (2013) Phyciochemical properties and applications of Poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev
[20]
Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4: 743–765.
[21]
Liu H, Slamovich EB, Webster TJ (2006) Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. Journal of Biomedical Materials Research Part A 78: 798–807.
[22]
Dagang G, Haoliang S, Kewei X, Yong H (2007) Long-term variations in mechanical properties and in vivo degradability of CPC/PLGA composite. J Biomed Mater Res B Appl Biomater 82: 533–544.
[23]
Shi X, Wang Y, Ren L, Zhao N, Gong Y, et al. (2009) Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 5: 1697–1707.
[24]
Wang X, Venkatraman SS, Boey FY, Loo JS, Tan LP (2006) Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 27: 5588–5595.
[25]
Wang X, Wenk E, Hu X, Castro GR, Meinel L, et al. (2007) Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 28: 4161–4169.
[26]
Perlstein I, Connolly JM, Cui X, Song C, Li Q, et al. (2003) DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther 10: 1420–1428.
[27]
Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–227.
[28]
Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, et al. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169.
[29]
Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741–753.
[30]
Li X, Claesson-Welsh L, Shibuya M (2008) VEGF receptor signal transduction. Methods Enzymol 443: 261–284.
[31]
Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312: 549–560.
[32]
Shi D, Lian J, He P, Wang LM, Xiao F, et al. (2003) Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Appl Phys Lett 83: 5301–5303.
[33]
Shi D, Guo Y, Dong Z, Lian J, Wang W, et al. (2007) Quantum-Dot-Activated Luminescent Carbon Nanotubes via a Nano Scale Surface Functionalization for in vivo Imaging. Adv Mater 19: 4033–4037.
[34]
Shi D (2003) Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Appl Phys Lett 83: 5301.
[35]
Hu X, Neoh KG, Zhang J, Kang ET, Wang W (2012) Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces. Biomaterials 33: 8082–8093.
[36]
Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9: 669–676.
[37]
Walker AP, Henderson J, Condon RE (1993) Double-layer prostheses for repair of abdominal wall defects in a rabbit model. J Surg Res 55: 32–37.
[38]
Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, et al. (1996) Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 60: 107–114.
[39]
Soiderer EE, Lantz GC, Kazacos EA, Hodde JP, Wiegand RE (2004) Morphologic study of three collagen materials for body wall repair. J Surg Res 118: 161–175.
[40]
Zhong T, Janis JE, Ahmad J, Hofer SO (2011) Outcomes after abdominal wall reconstruction using acellular dermal matrix: a systematic review. J Plast Reconstr Aesthet Surg 64: 1562–1571.
[41]
Silverman RP (2011) Acellular dermal matrix in abdominal wall reconstruction. Aesthet Surg J 31: 24S–29S.
[42]
Lee Y, Geckeler KE (2010) Carbon nanotubes in the biological interphase: the relevance of noncovalence. Adv Mater 22: 4076–4083.
[43]
Kam NW, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 45: 577–581.
[44]
Shaw IC (1999) Gold-based therapeutic agents. Chem Rev 99: 2589–2600.
[45]
Yan L, Zhao F, Li S, Hu Z, Zhao Y (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3: 362–382.
[46]
Chen B (2010) Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging. J Mater Chem 20: 9895.
[47]
Donaldson K, Aitken R, Tran L, Stone V, Duffin R, et al. (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92: 5–22.
[48]
Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2: MR17–71.
[49]
Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, et al. (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23: 377–382.
[50]
Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of carbon nanotubes. Adv Exp Med Biol 620: 181–204.
[51]
Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4: 26–49.
[52]
Bellows CF, Alder A, Helton WS (2006) Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devices 3: 657–675.