[1] | Heys GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiol 503: 163–170.
|
[2] | Fortier M, Fortier L, Hattori H, Saito H, Legendre L (2001) Visual predators and the diel vertical migration of copepods under Arctic sea ice during the midnight sun. J Plankt Res 23: 1263–1278.
|
[3] | Pearre S Jr (2003) Eat and run? The hunger satiation hypothesis in vertical migration: history, evidence and consequences. Biol Rev 78: 1–79.
|
[4] | Latreille PA (1829) in Le règne animal distribué d'après son organisation, pour servir de base a l'histoire naturelle des animaux et d'introduction a l'anatomie compare, ed Cuvier JLNF, Déterville, Paris, F: 1–584.
|
[5] | Murray J, Hjort J (1912) The depths of the ocean. London: MacMillan, 821 p.
|
[6] | Flagg CN, Smith SL (1989) On the use of the acoustic Doppler current profiler to measure zooplankton abundance. Deep-Sea Res 36: 455–474.
|
[7] | Schott F, Johns W (1987) Half-year long measurements with a buoy-mounted acoustic Doppler current profiler in the Somali current. J Geophys Res 92: 5169–5176.
|
[8] | Haney JF (1988) Diel patterns of zooplankton behaviour. Bull Mar Sci 43: 583–603.
|
[9] | Plueddemann AJ, Pinkel R (1989) Characterization of the patterns of diel migration using a Doppler sonar. Deep-Sea Res 36: 509–530.
|
[10] | Clay CS, Medwin H (1977) Acoustical oceanography: principles and applications. New York: John Wiley & Sons, 544 p.
|
[11] | Jiang S, Dickey TD, Steinberg DK, Madin LP (2007) Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda testbed mooring site. Deep-Sea Res I 54: 608–636.
|
[12] | Fielding S, Griffiths G, Roe HSJ (2004) The biological validation of ADCP acoustic backscatter through direct comparison with net samples and model predictions based on acoustic-scattering models. ICES J Mar Res 61: 184–200.
|
[13] | Thomson RE, Allen SE (2000) Time series acoustic observations of macrozooplankton diel migration and associated pelagic fish abundance. Can J Fish Aquat Sci 57: 1919–1931.
|
[14] | Fischer J, Visbeck M (1993) Seasonal variation of the daily zooplankton migration in the Greenland Sea. Deep-Sea Res I 40: 1547–1557.
|
[15] | Berge J, et al. (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5: 69–72.
|
[16] | van Haren H (2007) Monthly periodicity in acoustic reflections and vertical motions in the deep ocean. Geophys Res Lett 34: L12603 doi:10.1029/2007GL029947.
|
[17] | Kampa EM (1970) Underwater daylight and moonlight measurements in the eastern North Atlantic. J Mar Biol Ass UK 50: 397–420.
|
[18] | RDI (1996) A practical primer. San Diego: Teledyne-RDI, San Diego, 32 p.
|
[19] | Vinogradov GM (2005) Vertical distribution of macroplankton at the Charlie-Gibbs Fracture Zone (North Atlantic), as observed from the manned submersible “Mir-1”. Mar Biol 146: 325–331.
|
[20] | Vinogradov ME, Vereshchaka AL, Vinogradov GM, Musaeva EI (2000) Vertical distribution of zooplankton at the periphery of the North Atlantic subtropical gyre (in Russian). Izv AN Ser Biol 4: 496–510 English translation: Biol Bull (Trans Izv AN Ser Biol) 27:417–429.
|
[21] | Dronkers JJ (1964) Tidal computations in rivers and coastal waters. Amsterdam: North Holland Publishing Company, 518 p.
|
[22] | Forsythe WC, Rykiel EJ Jr, Stahl RS, Wu H-i, Schoolfield RM (1995) A model comparison for day length as a function of latitude and day of the year. Ecol Mod 80: 87–95.
|
[23] | Krebs JR, Davies NB (1993) An introduction to behavioural ecology. Oxford: Blackwell, 420 p.
|
[24] | Krause J, Ruxton GD (2002) Living in groups. Oxford: University Press, 211 p.
|
[25] | Piersma T, et al. (1993) Interactions between stomach structure and diet choice in shorebirds. Auk 110: 552–564.
|
[26] | Ringelberg J (1999) The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplank- ton. Biol Rev 74: 397–423.
|
[27] | Ringelberg J, Van Gool E (2003) On the combined analysis of proximate and ultimate aspects in diel vertical migration (DVM) research. Hydrobiol 491: 85–90.
|
[28] | Roenneberg T, Merrow M (2005) Circadian clocks – the fall and rise of physiology. Nature rev 6: 965–971.
|
[29] | Bijma J, Hemleben C, Wellnitz K (1994) Lunar-influenced carbonate flux of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep-Sea Res I 41: 511–530.
|
[30] | Khripounoff A, Vangriesheim A, Crassous P (1998) Vertical and temporal variations of particle fluxes in the deep tropical atlantic. Deep-Sea Res I 45: 193–216.
|
[31] | Lon?ari? N, Brummer G-J, Kroon D (2005) Lunar cycles and seasonal variations in deposition fluxes of planktic foraminiferal shell carbonate to the deep South Atlantic (central Walvis Ridge). Deep-Sea Res I 52: 1178–1188.
|
[32] | ?mijewska MI, Bielecka L, Grabowska A (2000) Seasonal and diel changes in the vertical distribution in relation to the age structure of Microcalanus pygmaeus Sars and Ctenocalanus citer Bowman & Heron (Pseudocalanidae, Copepoda) from Croker Passage (Antarctic Peninsula). Oceanologia 42: 89–103.
|
[33] | Zwicker D, Lubemsky DK, ten Wolde PR (2010) Robust circadian clocks from coupled protein-modification and transcription-translation cycles. Proc Natl Acad Sci USA 107: 22540–22545.
|
[34] | Piersma T (2002) When a year takes 18 months: evidence for a strong circannual clock in a shorebird. Naturwiss 89: 278–279.
|
[35] | Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430: 81–85.
|