Combination of Selenium and Green Tea Improves the Efficacy of Chemoprevention in a Rat Colorectal Cancer Model by Modulating Genetic and Epigenetic Biomarkers
Dietary supplementation of selenium and green tea holds promise in cancer prevention. In this study, we evaluated the efficacies of selenium and green tea administered individually and in combination against colorectal cancer in an azoxymethane (AOM)-induced rat colonic carcinogenesis model and determined the underlying mechanisms of the protection. Four-week old Sprague-Dawley male rats were fed with diets containing 0.5% green tea extract, 1ppm selenium as selenium-enriched milk protein, or combination of 1ppm selenium and 0.5% green tea extract. Animals received 2 AOM (15 mg/kg) treatments to induce colonic oncogenesis. Rats were killed 8 or 30 wk later after the last AOM to examine the effect of dietary intervention on aberrant crypt foci (ACF) formation or tumor development. On sacrifice, colons were examined for ACF and tumors, the mRNA levels of SFRP5 and Cyclin D1, and the proteins levels of ?-catenin, COX-2, Ki-67, DNMT1 and acetyl histone H3. The combination of selenium and green tea resulted in a significant additive inhibition of large ACF formation, this effect was greater than either selenium or green tea alone, P<0.01; the combination also had a significant additive inhibition effect on all tumor endpoints, the effect of the combination diet on tumor incidence, multiplicity and size was greater than selenium or green tea alone, P<0.01. Rats fed the combination diet showed marked reduction of DNMT1 expression and induction of histone H3 acetylation, which were accompanied by restoration of SFRP5 mRNA in normal-appearing colonic crypts. The combination diet also significantly reduced ?-catenin nuclear translocation, Cyclin D1 expression and cell proliferation. These data show, for the first time, that combination of selenium and green tea is more effective in suppressing colorectal oncogenesis than either agent alone. The preventive effect is associated with regulation of genetic and epigenetic biomarkers implicated in colonic carcinogenesis.
References
[1]
Half E, Arber N (2009) Colon cancer: preventive agents and the present status of chemoprevention. Expert Opin Pharmacother 10: 211–219.
[2]
Amin AR, Kucuk O, Khuri FR, Shin DM (2009) Perspectives for cancer prevention with natural compounds. J Clin Oncol 27: 2712–2725.
[3]
Wiseman M (2008) The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 67: 253–256.
[4]
Davis CD (2007) Nutritional interactions: credentialing of molecular targets for cancer prevention. Exp Biol Med (Maywood) 232: 176–183.
[5]
Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, et al. (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276: 1957–1963.
[6]
Yang CS (1997) Inhibition of carcinogenesis by tea. Nature 389: 134–135.
[7]
Thakur VS, Ruhul Amin AR, Paul RK, Gupta K, Hastak K, et al. (2010) p53-Dependent p21-mediated growth arrest pre-empts and protects HCT116 cells from PUMA-mediated apoptosis induced by EGCG. Cancer Lett 296: 225–232.
[8]
Chung FL, Schwartz J, Herzog CR, Yang YM (2003) Tea and cancer prevention: studies in animals and humans. J Nutr 133: 3268S–3274S.
[9]
Xiao H, Hao X, Simi B, Ju J, Jiang H, et al. (2008) Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis 29: 113–119.
[10]
McIntosh GH, Royle PJ, Lesno S, Scherer BL (2006) Selenised casein protects against AOM-induced colon tumors in Sprague Dawley rats. Nutr Cancer 54: 209–215.
[11]
Dennert G, Zwahlen M, Brinkman M, Vinceti M, Zeegers MP, et al.. (2011) Selenium for preventing cancer. Cochrane Database Syst Rev: CD005195.
[12]
Novotny L, Rauko P, Kombian SB, Edafiogho IO (2010) Selenium as a chemoprotective anti-cancer agent: reality or wishful thinking? Neoplasma 57: 383–391.
[13]
Inoue M, Sasazuki S, Wakai K, Suzuki T, Matsuo K, et al. (2009) Green tea consumption and gastric cancer in Japanese: a pooled analysis of six cohort studies. Gut 58: 1323–1332.
[14]
Tulp M, Bruhn JG, Bohlin L (2006) Food for thought. Drug Discov Today 11: 1115–1121.
[15]
Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B, et al. (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6: 1024–1028.
[16]
Sporn MB, Hong WK (2008) Clinical prevention of recurrence of colorectal adenomas by the combination of difluoromethylornithine and sulindac: an important milestone. Cancer Prev Res (Phila) 1: 9–11.
[17]
Group CW (1999) Prevention of cancer in the next millennium: Report of the Chemoprevention Working Group to the American Association for Cancer Research. Cancer Res 59: 4743–4758.
[18]
Gerner EW, Meyskens FL Jr (2009) Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res 15: 758–761.
[19]
Adhami VM, Malik A, Zaman N, Sarfaraz S, Siddiqui IA, et al. (2007) Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res 13: 1611–1619.
[20]
Amin AR, Wang D, Zhang H, Peng S, Shin HJ, et al. (2010) Enhanced anti-tumor activity by the combination of the natural compounds (-)-epigallocatechin-3-gallate and luteolin: potential role of p53. J Biol Chem 285: 34557–34565.
[21]
Zhou JR, Li L, Pan W (2007) Dietary soy and tea combinations for prevention of breast and prostate cancers by targeting metabolic syndrome elements in mice. Am J Clin Nutr 86: s882–888.
[22]
Yang H, Fang J, Jia X, Han C, Chen X, et al. (2011) Chemopreventive effects of early-stage and late-stage supplementation of vitamin E and selenium on esophageal carcinogenesis in rats maintained on a low vitamin E/selenium diet. Carcinogenesis 32: 381–388.
[23]
Telang N, Katdare M (2007) Combinatorial prevention of carcinogenic risk in a model for familial colon cancer. Oncol Rep 17: 909–914.
[24]
Hamdy SM, Latif AK, Drees EA, Soliman SM (2011) Prevention of rat breast cancer by genistin and selenium. Toxicol Ind Health.
[25]
Ohishi T, Kishimoto Y, Miura N, Shiota G, Kohri T, et al. (2002) Synergistic effects of (-)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane. Cancer Lett 177: 49–56.
[26]
Xu G, Ren G, Xu X, Yuan H, Wang Z, et al. (2010) Combination of curcumin and green tea catechins prevents dimethylhydrazine-induced colon carcinogenesis. Food Chem Toxicol 48: 390–395.
[27]
Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, et al. (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 3: 7563–7570.
[28]
Hu Y, McIntosh GH, Le Leu RK, Woodman R, Young GP (2008) Suppression of colorectal oncogenesis by selenium-enriched milk proteins: apoptosis and K-ras mutations. Cancer Res 68: 4936–4944.
[29]
McCarty MF (2004) Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr Cancer Ther 3: 349–380.
[30]
Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135: 1079–1099.
[31]
Reddy BS (2004) Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ Mol Mutagen 44: 26–35.
[32]
Takahashi M, Mutoh M, Kawamori T, Sugimura T, Wakabayashi K (2000) Altered expression of beta-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 21: 1319–1327.
[33]
Burdge GC, Lillycrop KA (2010) Bridging the gap between epigenetics research and nutritional public health interventions. Genome Med 2: 80.
[34]
Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, et al. (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422.
[35]
Ying Y, Tao Q (2009) Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics 4: 307–312.
[36]
Hu Y, McIntosh GH, Le Leu RK, Upton JM, Woodman RJ, et al.. (2011) The influence of selenium-enriched milk proteins and selenium yeast on plasma selenium levels and rectal selenoprotein gene expression in human subjects. Br J Nutr: 1–11.
[37]
Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, et al. (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48: 920–933.
[38]
Hu Y, Le Leu RK, Young GP (2005) Absence of acute apoptotic response to genotoxic carcinogens in p53-deficient mice is associated with increased susceptibility to azoxymethane-induced colon tumours. Int J Cancer 115: 561–567.
[39]
Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19: 1439–1440.
[40]
Rao CV, Steele VE, Swamy MV, Patlolla JM, Guruswamy S, et al. (2009) Inhibition of azoxymethane-induced colorectal cancer by CP-31398, a TP53 modulator, alone or in combination with low doses of celecoxib in male F344 rats. Cancer Res 69: 8175–8182.
[41]
Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10: 5.
[42]
Wang LS, Arnold M, Huang YW, Sardo C, Seguin C, et al. (2011) Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clin Cancer Res 17: 598–610.
[43]
Reddy BS (2007) Strategies for colon cancer prevention: combination of chemopreventive agents. Subcell Biochem 42: 213–225.
[44]
Xu J, Zhou J, Sheng J, Fang Y, Li F, et al. (2008) Inhibition of cyclophoshamide-induced mutagenicity by microsized powder of selenium-enriched green tea in mice. J Agric Food Chem 56: 3869–3875.
[45]
Xu J, Yang F, An X, Hu Q (2007) Anticarcinogenic activity of selenium-enriched green tea extracts in vivo. J Agric Food Chem 55: 5349–5353.
[46]
Hao X, Sun Y, Yang CS, Bose M, Lambert JD, et al. (2007) Inhibition of intestinal tumorigenesis in Apc(min/+) mice by green tea polyphenols (polyphenon E) and individual catechins. Nutr Cancer 59: 62–69.
[47]
Clevers H (2004) Wnt breakers in colon cancer. Cancer Cell 5: 5–6.
[48]
Polakis P (2000) Wnt signaling and cancer. Genes Dev 14: 1837–1851.
[49]
Suh N, Paul S, Hao X, Simi B, Xiao H, et al. (2007) Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res 13: 350–355.
[50]
Wali RK, Stoiber D, Nguyen L, Hart J, Sitrin MD, et al. (2002) Ursodeoxycholic acid inhibits the initiation and postinitiation phases of azoxymethane-induced colonic tumor development. Cancer Epidemiol Biomarkers Prev 11: 1316–1321.
[51]
Takahashi M, Nakatsugi S, Sugimura T, Wakabayashi K (2000) Frequent mutations of the beta-catenin gene in mouse colon tumors induced by azoxymethane. Carcinogenesis 21: 1117–1120.
[52]
de Sousa EM, Vermeulen L, Richel D, Medema JP (2011) Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 17: 647–653.
[53]
Eisinger AL, Nadauld LD, Shelton DN, Peterson PW, Phelps RA, et al. (2006) The adenomatous polyposis coli tumor suppressor gene regulates expression of cyclooxygenase-2 by a mechanism that involves retinoic acid. J Biol Chem 281: 20474–20482.
[54]
Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17: 363–369.
[55]
Arasaradnam RP, Commane DM, Bradburn D, Mathers JC (2008) A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis. Epigenetics 3: 193–198.
[56]
Lee JI, Nian H, Cooper AJ, Sinha R, Dai J, et al. (2009) Alpha-keto acid metabolites of naturally occurring organoselenium compounds as inhibitors of histone deacetylase in human prostate cancer cells. Cancer Prev Res (Phila) 2: 683–693.
[57]
Zhang Y, Chen H (2011) Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line. Exp Biol Med (Maywood) 236: 714–722.
[58]
Wang LS, Kuo CT, Cho SJ, Seguin C, Siddiqui J, et al. (2013) Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells. Nutr Cancer 65: 118–125.