全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

IMSA: Integrated Metagenomic Sequence Analysis for Identification of Exogenous Reads in a Host Genomic Background

DOI: 10.1371/journal.pone.0064546

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available tools for metagenomic high throughput sequence analysis. We present Integrated Metagenomic Sequence Analysis (IMSA), a flexible, fast, and robust computational analysis pipeline that is available for public use. IMSA takes input sequence from high throughput datasets and uses a user-defined host database to filter out host sequence. IMSA then aligns the filtered reads to a user-defined universal database to characterize exogenous reads within the host background. IMSA assigns a score to each node of the taxonomy based on read frequency, and can output this as a taxonomy report suitable for cluster analysis or as a taxonomy map (TaxMap). IMSA also outputs the specific sequence reads assigned to a taxon of interest for downstream analysis. We demonstrate the use of IMSA to detect pathogens and normal flora within sequence data from a primary human cervical cancer carrying HPV16, a primary human cutaneous squamous cell carcinoma carrying HPV 16, the CaSki cell line carrying HPV16, and the HeLa cell line carrying HPV18.

References

[1]  Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5: R245–249.
[2]  Borewicz K, Pragman AA, Kim HB, Hertz M, Wendt C, et al.. (2012) Longitudinal Analysis of the Lung Microbiome in Lung Transplantation. FEMS Microbiol Lett.
[3]  Lagier JC, Million M, Hugon P, Armougom F, Raoult D (2012) Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2: 136.
[4]  Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7: e47305.
[5]  Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319: 1096–1100.
[6]  Grard G, Fair JN, Lee D, Slikas E, Steffen I, et al. (2012) A novel rhabdovirus associated with acute hemorrhagic fever in central Africa. PLoS Pathog 8: e1002924.
[7]  Kistler AL, Gancz A, Clubb S, Skewes-Cox P, Fischer K, et al. (2008) Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent. Virol J 5: 88.
[8]  Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, et al. (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE 6: e20656.
[9]  Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, et al. (2012) Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. MBio 3: e00180–00112.
[10]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
[11]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[12]  Feng H, Taylor JL, Benos PV, Newton R, Waddell K, et al. (2007) Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. J Virol 81: 11332–11340.
[13]  Yang J, Yang F, Ren L, Xiong Z, Wu Z, et al. (2011) Unbiased Parallel Detection of Viral Pathogens in Clinical Samples by Use of a Metagenomic Approach???. Journal of Clinical Microbiology 49: 3463–3469.
[14]  Cheval J, Sauvage V, Frangeul L, Dacheux L, Guigon G, et al. (2011) Evaluation of high-throughput sequencing for identifying known and unknown viruses in biological samples. Journal of clinical microbiology 49: 3268–3275.
[15]  Lin Z, Puetter A, Coco J, Xu G, Strong MJ, et al. (2012) Detection of Murine Leukemia Virus in the Epstein-Barr Virus-Positive Human B-Cell Line JY, Using a Computational RNA-Seq-Based Exogenous Agent Detection Pipeline, PARSES. Journal of Virology 86: 2970–2977.
[16]  Kostic AD, Ojesina AI, Pedamallu CS, Jung J, Verhaak RG, et al. (2011) PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat Biotechnol 29: 393–396.
[17]  Zhu Z, Niu B, Chen J, Wu S, Sun S, et al.. (2012) MGAviewer: A desktop visualization tool for analysis of metagenomics alignment data. Bioinformatics.
[18]  Zakrzewski M, Bekel T, Ander C, Puhler A, Rupp O, et al.. (2012) MetaSAMS-A novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets. J Biotechnol.
[19]  Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37: D26–31.
[20]  Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868.
[21]  Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20: 3246–3248.
[22]  Conway C, Chalkley R, High A, Maclennan K, Berri S, et al. (2012) Next-generation sequencing for simultaneous determination of human papillomavirus load, subtype, and associated genomic copy number changes in tumors. J Mol Diagn 14: 104–111.
[23]  Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL (2011) Transcriptome Sequencing Demonstrates that Human Papillomavirus Is Not Active in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol.
[24]  Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18: 802–809.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133