全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Connectivity of the Habitat-Forming Kelp, Ecklonia radiata within and among Estuaries and Open Coast

DOI: 10.1371/journal.pone.0064667

Full-Text   Cite this paper   Add to My Lib

Abstract:

With marine protected areas being established worldwide there is a pressing need to understand how the physical setting in which these areas are placed influences patterns of dispersal and connectivity of important marine organisms. This is particularly critical for dynamic and complex nearshore marine environments where patterns of genetic structure of organisms are often chaotic and uncoupled from broad scale physical processes. This study determines the influence of habitat heterogeneity (presence of estuaries) on patterns of genetic structure and connectivity of the common kelp, Ecklonia radiata. There was no genetic differentiation of kelp between estuaries and the open coast and the presence of estuaries did not increase genetic differentiation among open coast populations. Similarly, there were no differences in level of inbreeding or genetic diversity between estuarine and open coast populations. The presence of large estuaries along rocky coastlines does not appear to influence genetic structure of this kelp and factors other than physical heterogeneity of habitat are likely more important determinants of regional connectivity. Marine reserves are currently lacking in this bioregion and may be designated in the future. Knowledge of the factors that influence important habitat forming organisms such as kelp contribute to informed and effective marine protected area design and conservation initiatives to maintain resilience of important marine habitats.

References

[1]  Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol App 13: S146–S158.
[2]  Roberts CM, Branch G, Bustamante RH, Castilla JC, Dugan J, et al. (2003) Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol App 13: S215–S228.
[3]  Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE, et al. (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Natl Acad Sci USA 105: 8974–8979.
[4]  Billot C, Engel CR, Rousvoal S, Kloareg B, Valero M (2003) Current patterns, habitat discontinuities and population genetic structure: the case of the kelp, Laminaria digitata in the English Channel. Mar Ecol Prog Ser 253: 111–121.
[5]  Alberto F, Raimondi DT, Reed DC, Coelho NC, Leblois R, et al. (2010) Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology 91: 49–56.
[6]  Gilg MR, Hilbish TJ (2003) The geography of marine larval dispersal: Coupling genetics with fine-scale physical oceanography. Ecology 84: 2989–2998.
[7]  White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, et al. (2010) Ocean currents help explain population genetic structure. Proc Royal Soc B 277: 1685–1694.
[8]  Banks SC, Piggott MP, Williamson JE, Bové U, Holbrook NJ, et al. (2007) Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88: 3055–3064.
[9]  Faugeron F, Valero M, Destombe C, Martin EA, Correa JA (2001) Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Rhodophyta). J Phycol 37: 705–716.
[10]  Nicastro KR, Zardi GI, McQuaid CD, Teske PR, Barker NP (2008) Coastal topography drives genetic structure in marine mussels. Mar Ecol Prog Ser 368: 189–195.
[11]  Ayvazian SG, Johnson MS, McGlashan DJ (1994) High levels of genetic subdivision of marine and estuarine populations of the estuarine catfish Cnidoglanis macrocephalus (Plotosidae) in southwest Australia. Mar Bio 118: 25–31.
[12]  Bernardi G (2000) Barriers to gene flow in Embiotoca jacksoni, a marine fish lacking a pelagic larval stage. Evolution 54: 226–237.
[13]  Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contributions of isolation by distance, discontinuous habitat, and biogeography to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10: 1439–1453.
[14]  Watts RJ, Johnson MA (2004) Estuaries, lagoons and enclosed embayments: habitats that enhance population subdivision of inshore fishes. Mar Freshwater Res 55: 641–651.
[15]  Gaines SD, Bertness M (1992) Dispersal of juveniles and variable recruitment in sessile marine species. Nature 360: 579–580.
[16]  Connell SD, Irving AD (2008) Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J Biogeog 35: 1608–1621.
[17]  Dayton PK (1975) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol Monogr 45: 137–159.
[18]  Irving AD, Connell SD, Gillanders BM (2004) Local complexity in patterns of canopy-benthos associations produce regional patterns across temperate Australasia. Mar Bio 144: 361–368.
[19]  Anderson MJ, Connell SD, Gillanders BM, Diebel CE, Blom WM, et al. (2005) Relationships between taxonomic resolution and spatial scales of multivariate variation. J Anim Ecol 74: 636–646.
[20]  Coleman MA, Vytopil E, Goodsell PJ, Gillanders BM, Connell SD (2007) Depth and mobile invertebrates: evidence of a widespread pattern in biodiversity. Mar Freshwater Res 58: 589–595.
[21]  Jennings R (1967) The development of the gametophyte and young sporophyte of Ecklonia radiata (C. Ag.) J. Ag. (Laminariales). J Royal Soc WA 50: 93–96.
[22]  Raimondi PT, Reed DC, Gaylord B, Washburn L (2004) Effects of self-fertilisation in the giant kelp, Macrocystis pyrifera. Ecology 85: 3267–3276.
[23]  Kirkman H, Kendrick GA (1997) Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9: 311–326.
[24]  Coleman MA, Roughan M, McDonald H, Connell SD, Gillanders BM, et al. (2011) Variation in the strength of continental boundary currents determines patterns of large-scale connectivity in kelp. J Ecol 99: 1026–1032.
[25]  Mu?iz-Salazar R, Talbot SL, Sage GK, Ward DH, Cabello-Pasini A (2006) Genetic structure of eelgrass Zostera marina meadows in an embayment with restricted water flow. Mar Ecol Prog Ser 309: 107–116.
[26]  Connell SD, Russell BD, Turner DJ, Shepherd SA, Kildea T, et al. (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol Prog Ser 360: 63–72.
[27]  Coleman MA, Kelaher BP, Steinberg PD, Millar AJ (2008) Absence of a large, brown macroalga on urbanised rocky reefs around Sydney, Australia, and evidence for historical decline. J Phycol 44: 897–901.
[28]  Kirkman H (1981) The first year in the life history and the survival of the juvenile marine macrophyte, Ecklonia radiata (Turn.) J. Agardh. J Exp Mar Bio Ecol 55: 243–254.
[29]  Dolman G, Coleman MA (2008) Characterisation of microsatellite loci in the habitat-forming kelp, Ecklonia radiata (Phaeophyceae, Laminariales). Cons Gen 10: 657–660.
[30]  Coleman MA, Gillanders BM, Connell SD (2009) Dispersal and gene flow by longitude: relative degrees of isolation across an east-west coastline in the canopy-forming kelp, Ecklonia radiata. Mar Freshwater Res 60: 802–809.
[31]  van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) PROGRAM NOTE. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538.
[32]  Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) Genetix, A WindowsTM Based Software for Population Genetic Analyses. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier, France. http://www.univ-montp2.fr/~genetix/genet?ix.htm. Accessed 2012.
[33]  Goudet J (1995) FSTAT (ver. 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486.
[34]  Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–137.
[35]  Rice RW (1989) Analyzing tables of statistical tests. Evolution 43: 23–225.
[36]  Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1: 47–50.
[37]  Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, et al. (2004) GeneCalss2: a software for genetic assignment and first generation migrants detection. J Hered 95: 536–39.
[38]  Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94: 9197–9201.
[39]  Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989–2000.
[40]  Berry O, Tocher MD, Sarre D (2004) Can assignment tests measure dispersal? Mol Ecol 13: 551–561.
[41]  Bohonak AJ (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. J Hered 93: 153–154.
[42]  Fish JD (1972) The breeding cycle and growth of open coast and estuarine populations of Littorina littorea. J Mar Bio Assoc UK 52: 1011–1019.
[43]  Bishop MJ, Coleman MA, Kelaher BP (2010) Cross-habitat impacts of species decline: responses of estuarine sediment communities to changing detrital resources. Oecologia 163: 517–525.
[44]  Waters JM, Fraser CI, Hewitt GM (2012) Founder takes all: density-dependent processes structure biodiversity. TREE 28: 78–85.
[45]  Waters JM, Fraser CI, Banks SC, Hewitt GM (2013) The founder space race: a reply to Buckley, et al. TREE doi:10.1016/j.tree.2013.01.008.
[46]  Bilton DT, Paula J, Bishop JDD (2002) Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science 55: 937–952.
[47]  Hurwood DA, Heasman MP, Mather PB (2005) Gene flow, colonisation and demographic history of the flat oyster Ostrea angasi. Mar Freshwater Res 56: 1099–1106.
[48]  Roberts DG, Ayre DJ (2010) Panmictic population structure in the migratory marine Sparid Acanthopagrus australis (Günther) despite its close association to estuaries. Mar Ecol Prog Ser 412: 223–230.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133