全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Disentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.)

DOI: 10.1371/journal.pone.0062707

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sweet potato (Ipomoea batatas (L.) Lam., Convolvulaceae) counts among the most widely cultivated staple crops worldwide, yet the origins of its domestication remain unclear. This hexaploid species could have had either an autopolyploid origin, from the diploid I. trifida, or an allopolyploid origin, involving genomes of I. trifida and I. triloba. We generated molecular genetic data for a broad sample of cultivated sweet potatoes and its diploid and polyploid wild relatives, for noncoding chloroplast and nuclear ITS sequences, and nuclear SSRs. Our data did not support an allopolyploid origin for I. batatas, nor any contribution of I. triloba in the genome of domesticated sweet potato. I. trifida and I. batatas are closely related although they do not share haplotypes. Our data support an autopolyploid origin of sweet potato from the ancestor it shares with I. trifida, which might be similar to currently observed tetraploid wild Ipomoea accessions. Two I. batatas chloroplast lineages were identified. They show more divergence with each other than either does with I. trifida. We thus propose that cultivated I. batatas have multiple origins, and evolved from at least two distinct autopolyploidization events in polymorphic wild populations of a single progenitor species. Secondary contact between sweet potatoes domesticated in Central America and in South America, from differentiated wild I. batatas populations, would have led to the introgression of chloroplast haplotypes of each lineage into nuclear backgrounds of the other, and to a reduced divergence between nuclear gene pools as compared with chloroplast haplotypes.

References

[1]  Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131: 452–462.
[2]  Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457: 843–848.
[3]  Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58: 5–10.
[4]  Allaby RG, Fuller DQ, Brown T (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci 105: 13982–13986.
[5]  McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186: 318–332.
[6]  Emshwiller E (2006) Origins of polyploid crops – The example of the octoploid tuber crop Oxalis tuberosa. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD, editors. Documenting domestication: New genetic and archaeological paradigms. Berkeley, CA: University of California Press. 153–168.
[7]  Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186: 5–17.
[8]  Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, et al. (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci 106: 13875–13879.
[9]  Robertson A, Rich TCG, Allen AM, Houston L, Roberts C, et al. (2010) Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol Ecol 19: 1675–1690.
[10]  Hilu KW (1993) Polyploidy and the evolution of domesticated plants. Am J Bot 80: 1494–1499.
[11]  Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, et al. (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci 108: 11311–11318.
[12]  Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100: 925–940.
[13]  Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, et al. (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99: 6080–6084.
[14]  Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J (2009) The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proc Natl Acad Sci 106: 5014–5018.
[15]  Piperno DR (2011) The origins of plant cultivation and domestication in the New World tropics. Curr Anthropol 52: 453–470.
[16]  Chacón MI, Pickersgill B, Debouck DG (2004) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110: 432–444.
[17]  Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, et al. (2010) Multiple origins of Lima bean landraces in the Americas: Evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50: 1773–1787.
[18]  Lebot V (2009) Tropical Root and Tuber Crops – Cassava, Sweet Potato, Yams and Aroids. Wallingford, UK: CABI Publishing Group.
[19]  Buteler MI, Jarret RL, LaBonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99: 123–132.
[20]  Huang J, Corke H, Sun M (2002) Highly polymorphic AFLP markers as a complementary tool to ITS sequences in assessing genetic diversity and phylogenetic relationships of sweetpotato (Ipomoea batatas (L.) Lam.) and its wild relatives. Genet Resour Crop Evol 49: 541–550.
[21]  Huang J, Sun M (2000) Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet 100: 1050–1060.
[22]  Jarret RL, Austin DF (1994) Genetic diversity and systematic relationships in sweetpotato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis. Genet Resour Crop Evol 41: 165–173.
[23]  Rajapakse S, Nilmalgoda SD, Molnar M, Ballard RE, Austin DF, et al. (2004) Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on nuclear beta-amylase gene sequences. Mol Phylogenet Evol 30: 623–632.
[24]  Srisuwan S, Sihachakr D, Siljak-Yakovlev S (2006) The origin and evolution of sweet potato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171: 424–433.
[25]  Austin DF (1988) The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. Lima, Peru. International Potato Center (CIP). 27–58.
[26]  Kobayashi M (1984) The Ipomoea trifida complex closely related to sweet potato. In: Shideler SF, Rincon H, editors. Proceedings of the 6th Symposium of the International Society of Tropical Root Crop. Lima, Peru: CIP. 561–568.
[27]  Bohac JR, Austin DF, Jones A (1993) Discovery of wild tetraploid sweetpotatoes. Econ Bot 47: 193–201.
[28]  Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci 92: 280.
[29]  Roullier C, Rossel G, Tay D, McKey D, Lebot V (2011) Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Mol Ecol 20: 3963–3977.
[30]  McDonald JA, Austin DF (1990) Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42: 116–120.
[31]  Komaki K, Regmi H, Katayama K, Tamiya S (1998) Morphological and RAPD pattern variations in sweetpotato and its closely related species. Breed Sci 48: 281–286.
[32]  Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94: 275–288.
[33]  White TJ, Bruns T, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols. San Diego: Academic Press. 315–322.
[34]  Ingvarsson PK, Ribstein S, Taylor DR (2003) Molecular evolution of insertions and deletion in the chloroplast genome of Silene. Mol Biol Evol 20: 1737–1740.
[35]  Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49: 369–381.
[36]  Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[37]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 59: 307–21.
[38]  Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657–1659.
[39]  Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.
[40]  Jombart T (2008) Adegenet: R package for the multivariate analysis of genetic markers. Bioinf 24: 1403–1405.
[41]  Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11: 94.
[42]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[43]  Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7: 574–578.
[44]  Magoon ML, Krishnan R, Vijaya Bai K (1970) Cytological evidence on the origin of sweet potato. Theor Appl Genet 40: 360–366.
[45]  Bardy KE, Albach DC, Schneeweiss GM, Fischer MA, Sch?nswetter P (2010) Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Mol Phylogenet Evol 57: 771–786.
[46]  Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L.(Brassicaceae). Mol Ecol 16: 2755–2767.
[47]  Grant V (1981) Plant speciation 2nd edition. Columbia University Press, New York.
[48]  Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16: 142–147.
[49]  Fortune PM, Schierenbeck KA, Ainouche AK, Jacquemin J, Wendel JF, et al. (2007) Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae). Mol Phylogenet Evol 43: 1040–1055.
[50]  Shiotani I, Yoshida S, Kawase T (1990) Numerical taxonomic analysis and crossability of diploid Ipomoea species related to the sweet potato. Japanese Journal of Breeding 40: 159–174.
[51]  Gao M, Ashu GM, Stewart L, Akwe WA, Njiti V, et al. (2012) Wx intron variations support an allohexaploid origin of the sweetpotato [Ipomoea batatas (L.) Lam]. Euphytica 177: 111–133.
[52]  Austin DF (1991) Ipomoea littoralis (Convolvulaceae)-Taxonomy, Distribution, and Ethnobotany. Econ Bot 45: 251–256.
[53]  Zhang DP, Cervantes J, Huaman Z, Carey E, Ghislain M (2000) Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Ressour Crop Evol 47 659–665.
[54]  Hughes CE, Govindarajulu R, Robertson A, Filer DL, Harris SA, et al.. (2007) Serendipitous backyard hybridization and the origin of crops. Proc Natl Acad Sci 104, 14389–94.
[55]  Ugent D, Peterson W (1988) Archeological remains of potato and sweet potato in Peru. CIP Circular 16: 1–10.
[56]  Ravi V, Naskar S, Makeshkumar T, Babu B, Krishnan BSP (2009) Molecular physiology of storage root formation and development in sweet potato (Ipomoea batatas (L.) Lam.). Journal of Root Crops 35: 1–27.
[57]  Orjeda G, Freyre R, Iwanaga M (1991) Use of Ipomoea trifida germ plasm for sweet potato improvement. 3. Development of 4x interspecific hybrids between Ipomoea batatas (L.) Lam (2n = 6x = 90) and I. trifida (H.B.K) G. Don (2n = 2x = 30) as storage-root initiators for wild species. Theor Appl Genet 83: 159–163.
[58]  Jones A (1967) Should Nishiyama's K123 (Ipomoea trifida) be designated I. batatas? Econ Bot 21: 163–166.
[59]  McKey D, Elias M, Pujol, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186: 318–332.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133