全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Molecular Phylogeny and Biogeography of Percocypris (Cyprinidae, Teleostei)

DOI: 10.1371/journal.pone.0061827

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fierce predatory freshwater fishes, the species of Percocypris (Cyprinidae, Teleostei) inhabit large rivers or lakes, and have a specific distribution pattern. Only a single species or subspecies occurs in each large-scale drainage basin of the Southeastern Tibetan Plateau. In this study, the molecular phylogenetic relationships for all but one of the described subspecies/species of Percocypris were investigated based on three mitochondrial genes (16S; COI; Cyt b) and one nuclear marker (Rag2). The results of Maximum Likelihood and Bayesian Inference analyses show that Percocypris is a strongly supported monophyletic group and that it is the sister group of Schizothorax. Combined with analyses of morphological characters, our results suggest that Percocypris needs to be reclassified, and we propose that six species be recognized, with corresponding distributions in five main drainages (including one lake). In addition, based on the results of the estimation of divergence times and ancestral drainages, we hypothesize that Percocypris likely originated in the early Miocene from a paleo-connected drainage system containing the contemporary main drainages of the Southeastern Tibetan Plateau. This study suggests that vicariance (due to the uplift of the Tibetan Plateau modifying the large-scale morphologies of drainage basins in the Southeastern Tibetan Plateau) has played an important role in the speciation of the genus. Furthermore, external morphological characters (such as the length of the fins) and an internal trait (the position of pterygiophore) appear to be correlated with different habitats in rivers and the lake.

References

[1]  Chu YT (1935) Comparative studies on the scales and on the pharyngeals and their teeth in Chinese cyprinids, with particular reference to taxonomy and evolution. Biological Bulletin, St. John's University 2: 1–225.
[2]  Tchang TL (1930) Description de Cyprinidés nouveaux de Se-Tchuan. Bulletin du Muséum National d'Histoire Naturelle (Série 2) 2: 84–85.
[3]  Tchang TL (1935) Two new species of Barbus from Yunnan. Bulletin of the Fan Memorial Institute of Biology, Peiping (Zoological Series) 6: 60–64.
[4]  Wu XW, Lin RD, Chen JX, Chen XL, He MJ (1977) Zhongguo like yulei zhi. [The cyprinid fishes of China]; Wu XW, et al., editors. Shanghai: People's Press. 265–268 p.
[5]  Chu XL, Cui GH (1989) The fishes of Yunnan, Part 1 Cyprinidae; Chu XL, Chen YR, et al., editors. Beijing: Science Press. 177–180 p.
[6]  Cui GH, Chu XL (1990) Differentiation and distribution of the cyprinid fish Percocypris pingi (Tchang). Dong Wu Fen Lei Xue Bao 15: 118–123.
[7]  Shan XH, Lin RD, Yue PQ, Chu XL (2000) Fauna Sinica. Osteichthyes. Cypriniformes III; Yue PQ, Shan XH, Lin RD, Chu XL, Zhang E, et al., editors. Beijing: Science Press. 47–51 p.
[8]  Kottelat M (2001) Freshwater Fishes of Northern Vietnam: A Preliminary Check-list of the Fishes Known Or Expected to Occur in Northern Vietnam: with Comments on Systematics and Nomenclature. Washington, DC: The World Bank, Environment and Social Development Unit, East Asia and Pacific Region. 35 p.
[9]  Pellegrin J, Chevey P (1936) Poissons nouveaux ou rares du Tonkin et de l'Annam. Bulletin de la Société Zoologique de France 61: 375–379.
[10]  Wang X, Li J, He S (2007) Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol 42: 157–170.
[11]  Kong X, Wang X, Gan X, Li J, He S (2007) Phylogenetic relationships of Cyprinidae (Teleostei: Cypriniformes) inferred from the partial S6K1 gene sequences and implication of indel sites in intron 1. Sci China C Life Sci 50: 780–788.
[12]  Li J, Wang X, Kong X, Zhao K, He S, et al. (2008) Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 47: 472–487.
[13]  He D, Chen Y, Chen Y, Chen Z (2004) Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau. Chin Sci Bull 49: 39–48.
[14]  Rüber L, Britz R, Kullander SO, Zardoya R (2004) Evolutionary and biogeographic patterns of the Badidae (Teleostei: Perciformes) inferred from mitochondrial and nuclear DNA sequence data. Mol Phylogenet Evol 32: 1010–1022.
[15]  Peng Z, Ho SYW, Zhang Y, He S (2006) Uplift of the Tibetan plateau: Evidence from divergence times of glyptosternoid catfishes. Mol Phylogenet Evol 39: 568–572.
[16]  Guo X, He S, Zhang Y (2005) Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences. Mol Phylogenet Evol 35: 344–362.
[17]  He D, Chen Y (2006) Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J Biogeogr 33: 1448–1460.
[18]  He D, Chen Y (2007) Molecular phylogeny and biogeography of the highly specialized grade schizothoracine fishes (Teleostei: Cyprinidae) inferred from cytochrome b sequences. Chin Sci Bull 52: 777–788.
[19]  Zhao Y, Zhang C (2009) Endemic Fishes of Sinocyclocheilus (Cypriniformes: Cyprinidae) in China. Beijing: Science Press. 255–257 p.
[20]  Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
[21]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple equence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
[22]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739.
[23]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
[24]  Schwarz G (1978) Estimating the Dimension of a Model. Ann Stat 6: 461–464.
[25]  Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772–772.
[26]  Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11: 914–921.
[27]  Luo A, Qiao H, Zhang Y, Shi W, Ho S, et al. (2010) Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. BMC Evol Biol 10: 242.
[28]  Abdo Z, Minin VN, Joyce P, Sullivan J (2005) Accounting for Uncertainty in the Tree Topology Has Little Effect on the Decision-Theoretic Approach to Model Selection in Phylogeny Estimation. Mol Biol Evol 22: 691–703.
[29]  Posada D, Crandall KA (2001) Selecting the Best-Fit Model of Nucleotide Substitution. Syst Biol 50: 580–601.
[30]  Ripplinger J, Sullivan J (2008) Does Choice in Model Selection Affect Maximum Likelihood Analysis? Syst Biol 57: 76–85.
[31]  Yang Z (1996) Maximum-likelihood models for combined analyses of multiple sequence data. J Mol Evol 42: 587–596.
[32]  Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4: 18.
[33]  Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J (2004) Bayesian Phylogenetic Analysis of Combined Data. Syst Biol 53: 47–67.
[34]  Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian Analyses, Partition Choice, and the Phylogenetic Relationships of Scincid Lizards. Syst Biol 54: 373–390.
[35]  Brown JM, Lemmon AR (2007) The Importance of Data Partitioning and the Utility of Bayes Factors in Bayesian Phylogenetics. Syst Biol 56: 643–655.
[36]  Rambaut A, Drummond AJ (2007) Tracer v1.5. Available: http://beast.bio.ed.ac.uk/Tracer. Accessed 2012 July 23.
[37]  Kass RE, Raftery AE (1995) Bayes Factors. J Am Stat Assoc 90: 773–795.
[38]  Huelsenbeck JP, Ronquist F (2001) Mrbayes: bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[39]  Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583.
[40]  Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.
[41]  Swofford DL (2002) Paup*. Phylogenetic analysis using parsimony (* and other methods), version. 4.0b10. Sinauer Associates, Sunderland, MA.
[42]  Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.
[43]  Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed Phylogenetics and Dating with Confidence. PLoS Biol 4: e88.
[44]  Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973.
[45]  Ferreira MAR, Suchard MA (2008) Bayesian analysis of elapsed times in continuous-time Markov chains. Can J Stat 36: 355–368.
[46]  B?hme M, Ilg A (2003) fosFARbase. Available: http://www.wahre-staerke.com. Accessed 2012 August 8.
[47]  Tsigenopoulos CS, Durand JD, ünlü E, Berrebi P (2003) Rapid radiation of the Mediterranean Luciobarbus species (Cyprinidae) after the Messinian salinity crisis of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis. Biol J Linn Soc Lond 80: 207–222.
[48]  Levin BA, Freyhof J, Lajbner Z, Perea S, Abdoli A, et al. (2012) Phylogenetic relationships of the algae scraping cyprinid genus Capoeta (Teleostei: Cyprinidae). Mol Phylogenet Evol 62: 542–549.
[49]  Sch?nhuth S, Shiozawa DK, Dowling TE, Mayden RL (2012) Molecular systematics of western North American cyprinids (Cypriniformes: Cyprinidae). Zootaxa 3586: 281–303.
[50]  Chen P, Arratia G (2010) Oldest known Mylopharyngodon (Teleostei: Cyprinidae) from the Mongolian Plateau and its biogeographical implications based on ecological niche modeling. J Vert Paleontol 30: 333–340.
[51]  Tao W, Mayden RL, He S (2013) Remarkable phylogenetic resolution of the most complex clade of Cyprinidae (Teleostei: Cypriniformes): A proof of concept of homology assessment and partitioning sequence data integrated with mixed model Bayesian analyses. Mol Phylogenet Evol 66: 603–616.
[52]  He S, Mayden RL, Wang X, Wang W, Tang KL, et al. (2008) Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: Further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogenet Evol 46: 818–829.
[53]  Liu J, Chang M (2009) A new Eocene catostomid (Teleostei: Cypriniformes) from northeastern China and early divergence of Catostomidae. Sci China Ser D Earth Sci 52: 189–202.
[54]  Mayden RL, Chen WJ, Bart HL, Doosey MH, Simons AM, et al. (2009) Reconstructing the phylogenetic relationships of the earth's most diverse clade of freshwater fishes – order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51: 500–514.
[55]  Harris PM, Mayden RL (2001) Phylogenetic Relationships of Major Clades of Catostomidae (Teleostei: Cypriniformes) as Inferred from Mitochondrial SSU and LSU rDNA Sequences. Mol Phylogenet Evol 20: 225–237.
[56]  Bart HL, Reneau P, Doosey MH, Bell C (2010) Evolutionary Divergence of Duplicate Copies of the Growth Hormone Gene in Suckers (Actinopterygii: Catostomidae). Int J Mol Sci 11: 1090–1102.
[57]  Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, et al. (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 109: 13698–13703.
[58]  Rambaut A (2009) Available: http://tree.bio.ed.ac.uk/software/figtre?e/.Accessed 2012 July 23.
[59]  Brooks DR (1985) Historical ecology: a new approach to studying the evolution of ecological associations. Ann Mo Bot Gard 72: 660–680.
[60]  Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, et al. (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23: TC1006.
[61]  Fang X, Lü L, Yang S, Li J, An Z, et al. (2002) Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Sci China Ser D Earth Sci 45: 289–299.
[62]  Ge X, Liu Y, Ren S (2002) Uplift dynamics of Qinghai–Tibet Plateau and Altun fault. Geol China 29: 346–350.
[63]  Sun HL (1996) Science monographic series: formation and evolution of Qinghai-Xizang Plateau. Shanghai Science and Technology Press, Shanghai. 104–106 p.
[64]  Shi YF, Li JJ, Li BY (1999) Uplift of the Qinghai-Tibetan Plateau and East Asia environmental change during late Cenozoic. Acta Geographical Sinica 54: 10–20.
[65]  Clark MK, House MA, Royden LH, Whipple KX, Burchfiel BC, et al. (2005) Late Cenozoic uplift of southeastern Tibet. Geology 33: 525–528.
[66]  Zhao X, Wu Z, Ye P, Tong Y, Hu D (2011) Discovery of Neogene Gravels and Dammed – Lake Sediments in Nujiang (Salween) River Valleys, Yunnan Province, China, and Their Implications. Acta Geol Sin 85: 1963–1976.
[67]  Ming Q, Shi Z (2006) The tentative inquiry on the formation time in the region of three parallel rivers, Yunnan. Yunnan Geographic Environment Research 18: 1–4.
[68]  Nanjing Institute of Geography and Limnology CAS, Lanzhou Institute of Geology CAS, Institute of Geochemistry CAS, Paleontology NIoGa (1989) Enviroments and Sedimentation of Fault Lakes, Yunnan Province. Science Press. xiii p.
[69]  Zhang DR, Chen MY, Murphy RW, Che J, Pang JF, et al. (2010) Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Mol Ecol 19: 3406–3420.
[70]  Liu Q, Chen P, He K, Kilpatrick CW, Liu SY, et al. (2012) Phylogeographic Study of Apodemus ilex (Rodentia: Muridae) in Southwest China. PLoS One 7: e31453.
[71]  Zhang TC, Sun H (2011) Phylogeographic structure of Terminalia franchetii (Combretaceae) in southwest China and its implications for drainage geological history. J Plant Res 124: 63–73.
[72]  Zhang TC, Comes HP, Sun H (2011) Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol Phylogenet Evol 60: 1–12.
[73]  Yang J, Yang JX, Chen XY (2012) A re-examination of the molecular phylogeny and biogeography of the genus Schizothorax (Teleostei: Cyprinidae) through enhanced sampling, with emphasis on the species in the Yunnan–Guizhou Plateau, China. J Zoolog Syst Evol Res 50: 184–191.
[74]  Aguirre WE (2009) Microgeographical diversification of threespine stickleback: body shape–habitat correlations in a small, ecologically diverse Alaskan drainage. Biol J Linn Soc Lond 98: 139–151.
[75]  Berner D, Adams DC, Grandchamp AC, Hendry AP (2008) Natural selection drives patterns of lake–stream divergence in stickleback foraging morphology. J Evol Biol 21: 1653–1665.
[76]  Berner D, Grandchamp AC, Hendry AP (2009) Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63: 1740–1753.
[77]  Berner D, Kaeuffer R, Grandchamp AC, Raeymaekers JAM, R?s?nen K, et al. (2011) Quantitative genetic inheritance of morphological divergence in a lake–stream stickleback ecotype pair: implications for reproductive isolation. J Evol Biol 24: 1975–1983.
[78]  Hendry AP, Hudson K, Walker JA, R?s?nen K, Chapman LJ (2011) Genetic divergence in morphology–performance mapping between Misty Lake and inlet stickleback. J Evol Biol 24: 23–35.
[79]  Hendry AP, Taylor EB (2004) How much of the variation in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs. Evolution 58: 2319–2331.
[80]  Kaeuffer R, Peichel CL, Bolnick DI, Hendry AP (2012) Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 66: 402–418.
[81]  Lavin PA, McPhail JD (1993) Parapatric lake and stream sticklebacks on northern Vancouver Island: disjunct distribution or parallel evolution? Can J Zool 71: 11–17.
[82]  Reimchen TE, Stinson EM, Nelson JS (1985) Multivariate differentiation of parapatric and allopatric populations of threespine stickleback in the Sangan River watershed, Queen Charlotte Islands. Can J Zool 63: 2944–2951.
[83]  Sharpe DMT, R?s?nen K, Berner D, Hendry AP (2008) Genetic and environmental contributions to the morphology of lake and stream stickleback: implications for gene flow and reproductive isolation. Evol Ecol Res 10: 849–866.
[84]  Langerhans RB, Layman CA, Langerhans AK, Dewitt TJ (2003) Habitat-associated morphological divergence in two Neotropical fish species. Biol J Linn Soc Lond 80: 689–698.
[85]  Haas TC, Blum MJ, Heins DC (2010) Morphological responses of a stream fish to water impoundment. Biol Lett 6: 803–806.
[86]  McGuigan K, Franklin CE, Moritz C, Blows MW (2003) Adaptation of rainbow fish to lake and stream habitats. Evolution 57: 104–118.
[87]  Franssen NR (2011) Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evol Appl 4: 791–804.
[88]  Collin H, Fumagalli L (2011) Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Mol Ecol 20: 4490–4502.
[89]  Taylor EB, Tamkee P, Keeley ER, Parkinson EA (2011) Conservation prioritization in widespread species: the use of genetic and morphological data to assess population distinctiveness in rainbow trout (Oncorhynchus mykiss) from British Columbia, Canada. Evol Appl 4: 100–115.
[90]  Pavey SA, Nielsen JL, MacKas RH, Hamon TR, Breden F (2010) Contrasting Ecology Shapes Juvenile Lake-Type and Riverine Sockeye Salmon. Trans Am Fish Soc 139: 1584–1594.
[91]  Roesma DI, Santoso P (2011) Morphological divergences among three sympatric populations of Silver Sharkminnow (Cyprinidae: Osteochilus hasseltii C.V.) in West Sumatra. Biodiversitas 12: 141–145.
[92]  Hendry AP, Taylor EB, McPhail JD (2002) Adaptive divergence and the balance between selection and gene flow: Lake and stream stickleback in the Misty System. Evolution 56: 1199–1216.
[93]  Beacham TD, Murray CB, Withler RE (1989) Age, Morphology, and Biochemical Genetic Variation of Yukon River Chinook Salmon. Trans Am Fish Soc 118: 46–63.
[94]  Swain DP, Holtby LB (1989) Differences in Morphology and Behavior between Juvenile Coho Salmon (Oncorhynchus kisutch) Rearing in a Lake and in its Tributary Stream. Can J Fish Aquat Sci 46: 1406–1414.
[95]  Drinan TJ, McGinnity P, Coughlan JP, Cross TF, Harrison SSC (2012) Morphological variability of Atlantic salmon Salmo salar and brown trout Salmo trutta in different river environments. Ecol Freshw Fish 21: 420–432.
[96]  Amato G, Schaller GB (1998) Phylogeny of the Tibetan steppe bovids: morphological and molecular comparisons; Schaller GB, editor. Chicago: University of Chicago Press. 245–249 p.
[97]  Vogler AP, Desalle R (1994) Diagnosing units of conservation management. Conserv Biol 8: 354–363.
[98]  Li C, Lu G, Ortí G (2008) Optimal Data Partitioning and a Test Case for Ray-Finned Fishes (Actinopterygii) Based on Ten Nuclear Loci. Syst Biol 57: 519–539.
[99]  Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Mol Biol Evol 29: 1695–1701.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133