全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

A Novel C-Type Lysozyme from Mytilus galloprovincialis: Insight into Innate Immunity and Molecular Evolution of Invertebrate C-Type Lysozymes

DOI: 10.1371/journal.pone.0067469

Full-Text   Cite this paper   Add to My Lib

Abstract:

A c-type lysozyme (named as MgCLYZ) gene was cloned from the mussel Mytilus galloprovincialis. Blast analysis indicated that MgCLYZ was a salivary c-type lysozyme which was mainly found in insects. The nucleotide sequence of MgCLYZ was predicted to encode a polypeptide of 154 amino acid residues with the signal peptide comprising the first 24 residues. The deduced mature peptide of MgCLYZ was of a calculated molecular weight of 14.4 kD and a theoretical isoelectric point (pI) of 8.08. Evolution analysis suggested that bivalve branch of the invertebrate c-type lysozymes phylogeny tree underwent positive selection during evolution. By quantitative real-time RT-PCR (qRT-PCR) analysis, MgCLYZ transcript was widely detected in all examined tissues and responded sensitively to bacterial challenge in hemocytes and hepatopancreas. The optimal temperature and pH of recombinant MgCLYZ (rMgCLYZ) were 20°C and 4, respectively. The rMgCLYZ displayed lytic activities against Gram-positive bacteria including Micrococcus luteus and Staphyloccocus aureus, and Gram-negative bacteria including Vibrio anguillarum, Enterobacter cloacae, Pseudomonas putida, Proteus mirabilis and Bacillus aquimaris. These results suggest that MgCLYZ perhaps play an important role in innate immunity of M. galloprovincialis, and invertebrate c-type lysozymes might be under positive selection in a species-specific manner during evolution for undergoing adaptation to different environment and diverse pathogens.

References

[1]  S?derh?ll K (1999) Invertebrate immunity. Dev Comp Immunol 23: 263–266.
[2]  Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunol Rev 198: 10–24.
[3]  Mitta G, Hubert F, Dyrynda EA, Boudry P, Roch P (2000) Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol 24: 381–393.
[4]  Song L, Wang L, Qui L, Zhang H (2010) Bivalve Immunity. In: Soderhall K, editor. Advances in Experimental Medicine and Biology – Invertebrate Immunity. New York, USA: Springer. 708: 44–65.
[5]  Zhao J, Song L, Li C, Zou H, Ni D, et al. (2007) Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Mol Immunol 44: 1198–1208.
[6]  Jollès P, Jollès J (1984) What's new in lysozyme research? Mol Cell Biochem 63: 165–189.
[7]  Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35: 127–160.
[8]  Herreweghe JM, Michiels CW (2012) Invertebrate lysozymes: diversity and distribution, molecular mechanism and in vivo function. J Biosci 37: 327–348.
[9]  Daffre S, Kylsten P, Samakovlis C, Hultmark D (1994) The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet 242: 152–162.
[10]  Kaizu A, Fagutao FF, Kondo H, Aoki T, Hirono I (2011) Functional analysis of C-type lysozyme in penaeid shrimp. J Biol Chem 286: 44344–44349.
[11]  Hikima S, Hikima J, Rojtinnakorn J, Hirono I, Aoki T (2003) Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene 316: 187–195.
[12]  de-la-Re-Vega E, Garcia-Galaz A, Diaz-Cinco ME, Sotelo-Mundo RR (2006) White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae. Fish Shellfish Immunol 20: 405–408.
[13]  Ye X, Gao FY, Zheng QM, Bai JJ, Wang H, et al. (2009) Cloning and characterization of the tiger shrimp lysozyme. Mol Biol Rep 36: 1239–1246.
[14]  Supungul P, Rimphanitchayakit V, Aoki T, Hirono I, Tassanakajon A (2010) Molecular characterization and expression analysis of a c-type and two novel muramidase-deficient i-type lysozymes from Penaeus monodon. Fish Shellfish Immunol 28(3): 490–498.
[15]  Ren Q, Zhao X, Wang J (2009) Molecular characterization and expression analysis of a chicken-type lysozyme gene from housefly (Musca domestica). J Genet Genomics 36(1): 7–16.
[16]  Wang WX, Wang YP, Deng XJ, Dang XL, Tian JH, et al. (2009) Molecular and functional characterization of a c-type lysozyme from the Asian corn borer, Ostrinia furnacalis. J Insect Sci 9: 17.
[17]  Mai WJ, Wang WN (2010) Protection of blue shrimp (Litopenaeus stylirostris) against the White Spot Syndrome Virus (WSSV) when injected with shrimp lysozyme. Fish Shellfish Immunol 28: 727–733.
[18]  Pan BP, Song X, LuoKY, Ge DY, Gao WW (2010) Expression of lysozyme gene in Vibrio anguillarum-chanlleged Cyclina sinensis. Oceanologia Et Limnologia Sinica 41(6): 901–906 (in Chinese with English abstract)..
[19]  Ding J, Li J, Bao Y, Li L, Wu F, et al. (2011) Molecular characterization of a mollusk chicken-type lysozyme gene from Haliotis discus hannai Ino, and the antimicrobial activity of its recombinant protein. Fish Shellfish Immunol 30: 163–172.
[20]  Wang Q, Wang X, Wang X, Yang H, Liu B (2010) Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure. Aquat Toxicol 100: 321–328.
[21]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
[22]  Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9): 2104–2105.
[23]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
[24]  Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inferences of amino acid sites under positive selection. Mol Biol Evol 22: 1107–1118.
[25]  Wang Q, Zhang L, Zhao J, You L, Wu H (2012) Two goose-type lysozymes in Mytilus galloprovincialis: possible function diversification and adaptive evolution. PLoS One 7(9): e45148.
[26]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.
[27]  Canesi L, Negri A, Barmo C, Banni M, Gallo G, et al. (2011) The organophosphate Chlorpyrifos interferes with the responses to 17β-estradiol in the digestive gland of the marine mussel Mytilus galloprovincialis. PLoS One 6(5): e19803.
[28]  Katayama H, Nagasu T, Oda Y (2001) Inprovement of in-gel digestion protocal for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15: 1416–1421.
[29]  Yang J, Wang L, Zhang H, Qiu L, Wang H, et al. (2011) C-type lectin in Chlamys farreri (CfLec-1) mediating immune recognition and opsonization. PLoS One 6(2): e17089.
[30]  Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, et al. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85.
[31]  Xue QG, Schey KL, Volety AK, Chu FLE, La Peyre JF (2004) Purification and characterization of lysozyme from plasma of the eastern oyster (Crassostrea virginica). Comp Biochem Physiol B 139: 11–25.
[32]  Wohlk?nig A, Huet J, Looze Y, Wintjens R (2010) Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS One 5(11): e15388.
[33]  Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412: 835–838.
[34]  Hultmark D (1996) Insect lysozymes. In: Jolles P, editor. Lysozymes: Model Enzyme in Biochemistry and Biology. Basel, Switzerland: Birkhauser Verlag. 75: 87–102.
[35]  Maenaka K, Kawai G, Watanabe K, Sunada F, Kumagai I (1994) Functional and structural role of a tryptophan generally observed in protein-carbohydrate interaction. Trp-62 of hen egg white lysozyme. J Biol Chem 269: 7070–7075.
[36]  Muraki M, Harata K, Jigami Y (1992) Dissection of the functional role of structural elements of tyrosine-63 in the catalytic action of human lysozyme. Biochemistry 31: 9212–9219.
[37]  Nitta K, Tsuge H, Sugai S, Shimazaki K (1987) The calcium-binding property of equine lysozyme. FEBS Lett 223(2): 405–408.
[38]  Zhu S (2008) Positive selection targeting the cathelin-like domain of the antimicrobial cathelicidin family. Cell Mol Life Sci 65: 1285–1294.
[39]  Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19: 908–917.
[40]  Lynn DJ, Lloyd AT, Fares MA, O’Farrelly C (2004) Evidence of positively selected sites in mammalian a-defensins. Mol Biol Evol 21: 819–827.
[41]  Shen T, Xu S, Wang X, Yu W, Zhou K, et al. (2012) Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol Biol 12: 39.
[42]  Prager EM (1996) Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression and gene number; in Lysozymes: model enzymes in biochemistry and biology (ed.) P Jollès (Basel: Birkh?user Verlag) 323–345.
[43]  Mai WJ, Hu CQ (2009) Molecular cloning, characterization, expression and antibacterial analysis of a lysozyme homologue from Fenneropenaeus merguiensis. Mol Biol Rep 36: 1587–1595.
[44]  Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D (1992) The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands. Mol Gen Genet 232(3): 335–343.
[45]  Moreira-Ferro CK, Daffre S, James AA, Marinotti O (1998) A lysozyme in the salivary glands of the malaria vector Anopheles darlingi. Insect Mol Biol 7(3): 257–264.
[46]  Li B, Calvo E, Marinotti O, James AA, Paskewitz SM (2005) Characterization of the c-type lysozyme gene family in Anopheles gambiae. Gene 360(2): 131–139.
[47]  Fujita A, Minamoto T, Shimizu I, Abe T (2002) Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite, Reticulitermes speratus. Insect Biochem Mol Biol 32(12): 1615–1624.
[48]  Liu F, Cui L, Cox-Foster D, Felton GW (2004) Characterization of a salivary lysozyme in larval Helicoverpa zea. J Chem Ecol 30(12): 2439–2457.
[49]  Ren Q, Zhao X, Wang J (2009) Molecular characterization and expression analysis of a chicken-type lysozyme gene from housefly (Musca domestica). J Genet Genomics 36(1): 7–16.
[50]  Mai WJ, Hu CQ (2009) cDNA cloning, expression and antibacterial activity of lysozyme C in the blue shrimp (Litopenaeus stylirostris). Prog Nat Sci 19(7): 837–844.
[51]  Fujimoto S, Toshimori-Tsuda I, Kishimoto K, Yamano Y, Morishima I (2001) Protein purification, cDNA cloning and gene expression of lysozyme from eri-silkworm, Samia cynthia ricini. Comp Biochem Physiol B 128(4): 709–718.
[52]  Abraham EG, Nagaraju J, Salunke D, Gupta HM, Datta RK (1995) Purification and partial characterization of an induced antibacterial protein in the silkworm, Bombyx mori. J Invertebr Pathol 65: 17–24.
[53]  Yu KH, Kim KN, Lee JH, Lee HS, Kim SH, et al. (2002) Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli. Dev Comp Immunol 26: 707–713.
[54]  Ye X, Zhang L, Tian Y, Tan A, Bai J, et al. (2010) Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Dev Comp Immunol 34(5): 501–509.
[55]  Wei S, Huang Y, Cai J, Huang X, Fu J, et al. (2012) Molecular cloning and characterization of c-type lysozyme gene in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 33(2): 186–196.
[56]  Yu LP, Sun BG, Li J, Sun L (2013) Characterization of a c-type lysozyme of Scophthalmus maximus: Expression, activity, and antibacterial effect. Fish Shellfish Immunol 34(1): 46–54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133