Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1) complex, which revealed a role of Rho3 in regulating Golgi/endosomal trafficking in fission yeast. Sip1, a conserved AP-1 accessory protein, recruits the AP-1 complex to the Golgi/endosomes through physical interaction. In this study, we showed that Sip1 is required for Rho3 localization. First, overexpression of rho3+ suppressed defective membrane trafficking associated with sip1-i4 mutant cells, including defects in vacuolar fusion, Golgi/endosomal trafficking and secretion. Notably, Sip1 interacted with Rho3, and GFP-Rho3, similar to Apm1-GFP, did not properly localize to the Golgi/endosomes in sip1-i4 mutant cells at 27°C. Interestingly, the C-terminal region of Sip1 is required for its localization to the Golgi/endosomes, because Sip1-i4-GFP protein failed to properly localize to Golgi/endosomes, whereas the fluorescence of Sip1ΔN mutant protein co-localized with that of FM4-64. Consistently, in the sip1-i4 mutant cells, which lack the C-terminal region of Sip1, binding between Apm1 and Rho3 was greatly impaired, presumably due to mislocalization of these proteins in the sip1-i4 mutant cells. Furthermore, the interaction between Apm1 and Rho3 as well as Rho3 localization to the Golgi/endosomes were significantly rescued in sip1-i4 mutant cells by the expression of Sip1ΔN. Taken together, these results suggest that Sip1 recruits Rho3 to the Golgi/endosomes through physical interaction and enhances the formation of the Golgi/endosome AP-1/Rho3 complex, thereby promoting crosstalk between AP-1 and Rho3 in the regulation of Golgi/endosomal trafficking in fission yeast.
References
[1]
Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81: 153-208. PubMed: 11152757.
[2]
Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118: 2085-2092. 118/10/2085 [pii];10. 1242/jcs.02379 [doi]. doi:10.1242/jcs.02379. . PubMed : 15890984.
[3]
Buchsbaum RJ (2007) Rho activation at a glance. J Cell Sci 120: 1149-1152: 120/7/1149 [pii];10. 1242/jcs.03428 [doi].
[4]
Lane KT, Beese LS (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47: 681-699. R600002-JLR200 [pii];10.1194/jlr.R600002-JLR200 [doi]. doi:10.1194/jlr.R600002-JLR200. . PubMed : 16477080.
[5]
Rikitake Y, Liao JK (2005) Rho GTPases, statins, and nitric oxide. Circ Res 97: 1232-1235: 97/12/1232 [pii];10.1161/01.RES.0000196564.18314.23 [doi]. . PubMed : 16339495.
[6]
Perez P, Rincón SA (2010) Rho GTPases: regulation of cell polarity and growth in yeasts. Biochem J 426: 243-253. BJ20091823 [pii];10.1042/BJ20091823 [doi]. doi:10.1042/BJ20091823. . PubMed : 20175747.
[7]
Robinson NG, Guo L, Imai J, Toh-E A, Matsui Y et al. (1999) Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol Cell Biol 19: 3580-3587. PubMed: 10207081.
[8]
Nakano K, Imai J, Arai R, Toh-E A, Matsui Y et al. (2002) The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast. J Cell Sci 115: 4629-4639. doi:10.1242/jcs.00150. PubMed: 12415007.
[9]
Estravís M, Rincón SA, Santos B, Pérez P (2011) Cdc42 regulates multiple membrane traffic events in fission yeast. Traffic 12: 1744-1758. doi:10.1111/j.1600-0854.2011.01275.x. PubMed: 21899677.
[10]
Kita A, Li C, Yu Y, Umeda N, Doi A et al. (2011) Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast. PLOS ONE 6: e16842. doi:10.1371/journal.pone.0016842. PubMed: 21304827.
[11]
Ma Y, Takeuchi M, Sugiura R, Sio SO, Kuno T (2009) Deletion mutants of AP-1 adaptin subunits display distinct phenotypes in fission yeast. Genes Cells 14: 1015-1028. GTC1327 [pii];10.1111/j.1365-2443.2009.01327.x [doi]. doi:10.1111/j.1365-2443.2009.01327.x. . PubMed : 19624755.
[12]
Kita A, Sugiura R, Shoji H, He Y, Deng L et al. (2004) Loss of Apm1, the micro1 subunit of the clathrin-associated adaptor-protein-1 complex, causes distinct phenotypes and synthetic lethality with calcineurin deletion in fission yeast. Mol Biol Cell 15: 2920-2931. doi:10.1091/mbc.E03-09-0659. PubMed: 15047861.
[13]
Yu Y, Kita A, Udo M, Katayama Y, Shintani M et al. (2012) Sip1, a Conserved AP-1 Accessory Protein, Is Important for Golgi/Endosome Trafficking in Fission Yeast. PLOS ONE 7: e45324. doi:10.1371/journal.pone.0045324. PubMed: 23028933; PONE-D-12-17506 [pii].
[14]
Fernández GE, Payne GS (2006) Laa1p, a conserved AP-1 accessory protein important for AP-1 localization in yeast. Mol Biol Cell 17: 3304-3317. E06-02-0096 [pii];10.1091/mbc.E06-02-0096 [doi]. doi:10.1091/mbc.E06-02-0096. . PubMed : 16687571.
[15]
Hirst J, Borner GH, Harbour M, Robinson MS (2005) The aftiphilin/p200/gamma-synergin complex. Mol Biol Cell 16: 2554-2565. E04-12-1077 [pii];10.1091/mbc.E04-12-1077 [doi].
[16]
Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795-823. doi:10.1016/0076-6879(91)94059-L. PubMed: 2005825.
[17]
Maundrell K (1990) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265: 10857-10864. PubMed: 2358444.
[18]
Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence [letter]. Nature. 373: 663-664. doi:10.1038/373663b0.
[19]
Edamatsu M, Toyoshima YY (2003) Fission yeast synaptobrevin is involved in cytokinesis and cell elongation. Biochem Biophys Res Commun 301: 641-645. doi:10.1016/S0006-291X(03)00017-2. PubMed: 12565827.
[20]
Page LJ, Sowerby PJ, Lui WW, Robinson MS (1999) Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin. J Cell Biol 146: 993-1004. doi:10.1083/jcb.146.5.993. PubMed: 10477754.
[21]
Jourdain I, Spielewoy N, Thompson J, Dhut S, Yates JR et al. (2009) Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast. Biochem J 420: 169-177. BJ20081659 [pii];10.1042/BJ20081659 [doi]. doi:10.1042/BJ20081659. . PubMed : 19243310.
[22]
Wang H, Tang X, Liu J, Trautmann S, Balasundaram D et al. (2002) The multiprotein exocyst complex is essential for cell separation in Schizosaccharomyces pombe. Mol Biol Cell 13: 515-529. doi:10.1091/mbc.01-11-0542. PubMed: 11854409.