全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

The Quantitative Genetic Architecture of the Bold-Shy Continuum in Zebrafish, Danio rerio

DOI: 10.1371/journal.pone.0068828

Full-Text   Cite this paper   Add to My Lib

Abstract:

In studies of consistent individual differences (personality) along the bold-shy continuum, a pattern of behavioral correlations frequently emerges: individuals towards the bold end of the continuum are more likely to utilize risky habitat, approach potential predators, and feed under risky conditions. Here, we address the hypothesis that observed phenotypic correlations among component behaviors of the bold-shy continuum are a result of underlying genetic correlations (quantitative genetic architecture). We used a replicated three-generation pedigree of zebrafish (Danio rerio) to study three putative components of the bold-shy continuum: horizontal position, swim level, and feeding latency. We detected significant narrow-sense heritabilities as well as significant genetic and phenotypic correlations among all three behaviors, such that fish selected for swimming at the front of the tank swam closer to the observer, swam higher in the water column, and fed more quickly than fish selected for swimming at the back of the tank. Further, the lines varied in their initial open field behavior (swim level and activity level). The quantitative genetic architecture of the bold-shy continuum indicates that the multivariate behavioral phenotype characteristic of a “bold” personality type may be a result of correlated evolution via underlying genetic correlations.

References

[1]  Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82: 291–318. doi:10.1111/j.1469-185X.2007.00010.x. PubMed: 17437562.
[2]  Wilson DS, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. Trends Ecol Evol 9: 442–446. doi:10.1016/0169-5347(94)90134-1. PubMed: 21236920.
[3]  Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A (2011) Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J Fish Biol 78: 395–435. doi:10.1111/j.1095-8649.2010.02874.x. PubMed: 21284626.
[4]  Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overiew. Q Rev Biol 79: 241–277. doi:10.1086/422893. PubMed: 15529965.
[5]  Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution: 1766–1774.
[6]  Trut L, Oskina I, Kharlamova A (2009) Animal evolution during domestication: the domesticated fox as a model. Bioessays 31: 349–360. doi:10.1002/bies.200800070. PubMed: 19260016.
[7]  Dochtermann NA (2011) Testing Cheverud’s conjecture for behavioral correlations and behavioral syndromes. Evolution 65: 1814–1820. doi:10.1111/j.1558-5646.2011.01264.x. PubMed: 21644966.
[8]  Bell AM (2005) Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J Evol Biol 18: 464–473. doi:10.1111/j.1420-9101.2004.00817.x. PubMed: 15715852.
[9]  Dingemanse NJ, Van der Plas F, Wright J, Réale D, Schrama M et al. (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc Biol Sci 276: 1285–1293. doi:10.1098/rspb.2008.1555. PubMed: 19129142.
[10]  Sison M, Cawker J, Buske C, Gerlai R (2006) Fishing for genes influencing vertebrate behavior: zebrafish making headway. Lab Anim (NY) 35: 33–39. doi:10.1038/laban0506-33. PubMed: 16645614.
[11]  Dugatkin L, McCall M, Gregg R, Cavanaugh A, Christensen C et al. (2005) Zebrafish (Danio rerio) exhibit individual differences in risk-taking behavior during predator inspection. Ethol Ecol Evol 17: 77–81. doi:10.1080/08927014.2005.9522617.
[12]  Robison BD, Rowland W (2005) A potential model system for studying the genetics of domestication: behavioral variation among wild and domesticated strains of zebra danio (Danio rerio). Can J Fish Aquat Sci 62: 2046–2054. doi:10.1139/f05-118.
[13]  Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33: 461–468. doi:10.1023/A:1025762314250. PubMed: 14574124.
[14]  Gerlai R (2010) Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 207: 223–231. doi:10.1016/j.bbr.2009.10.008. PubMed: 19836422.
[15]  Robison BD, Benner MJ, Singer ML, Oswald ME (2012) A High-Throughput and Inexpensive Assay for Anxiety-Related Behaviors in the Zebrafish, Based on Place Preference and Latency to Feed. Zebrafish Protoc Neurobehav Res Springer: 203–215.
[16]  Oswald M, Robison BD (2008) Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can J Zool 86: 1085–1094. doi:10.1139/Z08-085. PubMed: 21379405.
[17]  Moretz JA, Martins EP, Robison BD (2007) The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ Biol Fishes 80: 91–101. doi:10.1007/s10641-006-9122-4.
[18]  Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK (2003) Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90: 374–377. doi:10.1007/s00114-003-0443-2. PubMed: 12955228.
[19]  Lessells C, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk: 116–121.
[20]  Benner MJ, Drew RE, Hardy RW, Robison BD (2010) Zebrafish (Danio rerio) vary by strain and sex in their behavioral and transcriptional responses to selenium supplementation. Comp Biochem Physiol A Mol Integr Physiol 157: 310–318. doi:10.1016/j.cbpa.2010.07.016. PubMed: 20659579.
[21]  Kentt?mies H, Nordrum NV, Bren?e UT, Smeds K, Johannessen KR et al. (2002) Selection for more confident foxes in Finland and Norway: Heritability and selection response for confident behaviour in blue foxes (Alopex lagopus). Appl Anim Behav Sci 78: 67–82. doi:10.1016/S0168-1591(02)00078-3.
[22]  Reinhardt UG (2001) Selection for surface feeding in farmed and sea-ranched masu salmon juveniles. Trans Am Fish Soc 130: 155–158. doi:10.1577/1548-8659(2001)130.
[23]  Magnhagen C (2007) Social influence on the correlation between behaviours in young-of-the-year perch. Behav Ecol Sociobiol 61: 525–531. doi:10.1007/s00265-006-0280-3.
[24]  Biro PA, Abrahams MV, Post JR, Parkinson EA (2004) Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proc Biol Sci 271: 2233–2237. doi:10.1098/rspb.2004.2861. PubMed: 15539348.
[25]  Huntingford FA (2004) Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J Fish Biol 65: 122–142. doi:10.1111/j.0022-1112.2004.00562.x.
[26]  Weber ED, Fausch KD (2003) Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Can J Fish Aquat Sci 60: 1018–1036. doi:10.1139/f03-087.
[27]  Hamilton IM, Dill LM (2002) Monopolization of food by zebrafish (Danio rerio) increases in risky habitats. Can J Zool 80: 2164–2169. doi:10.1139/z02-199.
[28]  Ariyomo TO, Watt PJ (2012) The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Anim Behav 83: 41–46. doi:10.1016/j.anbehav.2011.10.004.
[29]  Dzieweczynski TL, Crovo JA (2011) Shyness and boldness differences across contexts in juvenile three-spined stickleback Gasterosteus aculeatus from an anadromous population. J Fish Biol 79: 776–788. doi:10.1111/j.1095-8649.2011.03064.x. PubMed: 21884112.
[30]  Wilson AD, Whattam EM, Bennett R, Visanuvimol L, Lauzon C et al. (2010) Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus. Behav Ecol Sociobiol 64: 703–715. doi:10.1007/s00265-009-0888-1.
[31]  Augustsson H, Meyerson BJ (2004) Exploration and risk assessment: a comparative study of male house mice (Mus musculus musculus) and two laboratory strains. Physiol Behav 81: 685–698. doi:10.1016/j.physbeh.2004.03.014. PubMed: 15178164.
[32]  Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates, Inc..
[33]  Kirkpatrick M (2009) Patterns of quantitative genetic variation in multiple dimensions. Genetica 136: 271–284. doi:10.1007/s10709-008-9302-6. PubMed: 18695991.
[34]  Walsh B, Blows MW (2009) Abundant Genetic Variation plus Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation. Annu Rev Ecol Evol Syst 40: 41–59. doi:10.1146/annurev.ecolsys.110308.120232.
[35]  Janzen FJ, Stern HS (1998) Logistic regression for empirical studies of multivariate selection. Evolution: 1564–1571.
[36]  Brown C, Jones F, Braithwaite V (2007) Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J Fish Biol 71: 1590–1601. doi:10.1111/j.1095-8649.2007.01627.x.
[37]  Yamamoto T, Reinhardt UG (2003) Dominance and predator avoidance in domesticated and wild masu salmon Oncorhynchus masou. Fish Sci 69: 88–94. doi:10.1046/j.1444-2906.2003.00591.x.
[38]  Iwama GK, Pickering A, Sumpter J, Schreck CB (1997) Fish stress and health in aquaculture. Cambridge University Press.
[39]  Oswald ME, Drew RE, Racine M, Murdoch GK, Robison BD (2012) Is behavioral variation along the bold-shy continuum associated with variation in the stress axis in zebrafish? Physiol Biochem Zool 85: 718–728. doi:10.1086/668203. PubMed: 23099468.
[40]  Price EO (2002) Animal domestication and behavior. Cabi.
[41]  Campler M, J?ngren M, Jensen P (2009) Fearfulness in red jungle fowl and domesticated White Leghorn chickens. Behav Processes 81: 39–43. doi:10.1016/j.beproc.2008.12.018. PubMed: 19154782.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133