[1] | Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics. New York: John Wiley & Sons. 455pp.
|
[2] | Croner LJ, Purpura K, Kaplan E (1993) Response variability in retinal ganglion cells of primates. Proc Natl Acad Sci U S A 90: 8128-8130. doi:10.1073/pnas.90.17.8128. PubMed: 8367474.
|
[3] | Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9: 292-303. doi:10.1038/nrn2258. PubMed: 18319728.
|
[4] | Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140-143. doi:10.1038/370140a0. PubMed: 8022482.
|
[5] | Hernández A, Zainos A, Romo R (2000) Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci U S A 97: 6191-6196. doi:10.1073/pnas.120018597. PubMed: 10811922.
|
[6] | Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13: 87-100. doi:10.1017/S095252380000715X. PubMed: 8730992.
|
[7] | Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21: 4809-4821. PubMed: 11425908.
|
[8] | Polonsky A, Blake R, Braun T, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3: 1153-1159. doi:10.1038/80676. PubMed: 11036274.
|
[9] | Thielscher A, Pessoa L (2007) Neural correlates of perceptual choice and decision making during fear-disgust discrimination. J Neurosci 27: 2908-2917. doi:10.1523/JNEUROSCI.3024-06.2007. PubMed: 17360913.
|
[10] | Kim YJ, Grabowecky M, Suzuki S (2006) Stochastic resonance in binocular rivalry. Vision Res 46: 392-406. doi:10.1016/j.visres.2005.08.009. PubMed: 16183099.
|
[11] | Sweeny TD, Grabowecky M, Kim YJ, Suzuki S (2011) Internal curvature signal and noise in low- and high-level vision. J Neurophysiol 105: 1236-1257. doi:10.1152/jn.00061.2010. PubMed: 21209356.
|
[12] | Bernasconi F, De Lucia M, Tzovara A, Manuel AL, Murray MM et al. (2011) Noise in brain activity engenders perception and influences discrimination sensitivity. J Neurosci 31: 17971-17981. doi:10.1523/JNEUROSCI.3715-11.2011. PubMed: 22159111.
|
[13] | Micheyl C, McDermott JH, Oxenham AJ (2009) Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Atten Percept Psychophys 71: 5-7. DOI 10.3758/APP.71.1.5.
|
[14] | Neri P (2010) How inherently noisy is human sensory processing? Psychon B Rev 17: 802-808. doi:10.3738/Pbr.17.6.802. PubMed: 21169572.
|
[15] | Amitay S, Irwin A, Moore DR (2006) Discrimination learning induced by training with identical stimuli. Nat Neurosci 9: 1446-1448. doi:10.1038/nn1787. PubMed: 17028582.
|
[16] | British . Society of Audiology (2004) Pure tone air and bone conduction threshold audiometry with and without masking and determination of uncomfortable loudness levels. Reading: British Society of Audiology.
|
[17] | Halliday LF, Moore DR, Taylor JL, Amitay S (2011) Dimension-specific attention directs learning and listening on auditory training tasks. Atten Percept Psychophys 73: 1329-1335. DOI 10.3758/s13414-011-0148-0.
|
[18] | Haig AR, Gordon E (1998) Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time. Psychophysiology 35: 591-595. doi:10.1017/S0048577298970512. PubMed: 9715102.
|
[19] | Barry JG, Ferguson MA, Moore DR (2010) Making sense of listening: The IMAP Test Battery. J Vis Exp E 2139: ([MedlinePgn:]). doi:10.3791/2139. . PubMed : 20972412.
|
[20] | Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134: 9-21. doi:10.1016/j.jneumeth.2003.10.009. PubMed: 15102499.
|
[21] | Briley PM, Breakey C, Krumbholz K (2012) Evidence for pitch chroma mapping in human auditory cortex. Cereb Cortex 10. 1093/cercor/bhs242. . PubMed : 22918980.
|
[22] | Bell AJ, Sejnowski TJ (1995) An information maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159. doi:10.1162/neco.1995.7.6.1129. PubMed: 7584893.
|
[23] | Luck SJ (2005) Ten simple rules for designing ERP experiments. In: TC Handy. Event-Related Potentials: A Methods Handbook. Cambridge, MA: The MIT Press. pp. 17-32.
|
[24] | Ben-David BM, Campeanu S, Tremblay KL, Alain C (2011) Auditory evoked potentials dissociate rapid perceptual learning from task repetition without learning. Psychophysiology 48: 797-807. doi:10.1111/j.1469-8986.2010.01139.x. PubMed: 21054432.
|
[25] | Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: A step-by-step tutorial review. Brain Topogr 20: 249-264. doi:10.1007/s10548-008-0054-5. PubMed: 18347966.
|
[26] | Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology 48: 1711-1725. doi:10.1111/j.1469-8986.2011.01273.x. PubMed: 21895683.
|
[27] | N??t?nen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology 24: 375-425. doi:10.1111/j.1469-8986.1987.tb00311.x. PubMed: 3615753.
|
[28] | Zouridakis G, Simos PG, Papanicolaou AC (1998) Multiple bilaterally asymmetric cortical sources account for the auditory N1m component. Brain Topogr 10: 183-189. doi:10.1023/A:1022246825461. PubMed: 9562539.
|
[29] | Soltani M, Knight RT (2000) Neural Origins of the P300. Crit Rev Neurobiol 14: 199-224. PubMed: 12645958.
|
[30] | Rohrbaugh JW, Syndulko K, Lindsley DB (1978) Cortical slow negative waves following non-paired stimuli: Effects of task factors. Electroencephalogr Clin Neurophysiol 45: 551-567. doi:10.1016/0013-4694(78)90156-6. PubMed: 81758.
|
[31] | Ress D, Heeger DJ (2003) Neuronal correlates of perception in early visual cortex. Nat Neurosci 6: 414-420. doi:10.1038/nn1024. PubMed: 12627164.
|
[32] | Garrido MI, Kilner JM, Kiebel SJ, Friston KJ (2007) Evoked brain responses are generated by feedback loops. Proc Natl Acad Sci U S A 104: 20961-20966. doi:10.1073/pnas.0706274105. PubMed: 18087046.
|
[33] | Gilbert CD, Sigman M (2007) Brain states: Top-down influences in sensory processing. Neuron 54: 677-696. doi:10.1016/j.neuron.2007.05.019. PubMed: 17553419.
|
[34] | Sapir A, d’Avossa G, McAvoy M, Shulman GL, Corbetta M (2005) Brain signals for spatial attention predict performance in a motion discrimination task. Proc Natl Acad Sci U S A 102: 17810-17815. doi:10.1073/pnas.0504678102. PubMed: 16306268.
|
[35] | Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171-184. doi:10.1016/j.neuron.2007.08.023. PubMed: 17920023.
|
[36] | Wyart V, Tallon-Baudry C (2009) How ongoing fluctuations in human visual cortex predict perceptual awareness: Baseline shift versus decision bias. J Neurosci 29: 8715-8725. doi:10.1523/JNEUROSCI.0962-09.2009. PubMed: 19587278.
|
[37] | Hesselmann G, Kell CA, Eger E, Kleinschmidt A (2008) Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci U S A 105: 10984-10989. doi:10.1073/pnas.0712043105. PubMed: 18664576.
|
[38] | Bode S, Sewell DK, Lilburn S, Forte JD, Smith PL et al. (2012) Predicting perceptual decision biases from early brain activity. J Neurosci 32: 12488-12498. doi:10.1523/Jneurosci.1708-12.2012. PubMed: 22956839.
|
[39] | Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273: 1868-1871. doi:10.1126/science.273.5283.1868. PubMed: 8791593.
|
[40] | Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19: 2209-2223. PubMed: 10066274.
|
[41] | Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends Neurosci 27: 161-168. doi:10.1016/j.tins.2004.01.006. PubMed: 15036882.
|
[42] | Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86: 1916-1936. PubMed: 11600651.
|
[43] | Rinne T, Koistinen S, Salonen O, Alho K (2009) Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks. J Neurosci 29: 13338-13343. doi:10.1523/Jneurosci.3012-09.2009. PubMed: 19846721.
|
[44] | Biermann S, Heil P (2000) Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. J Neurophysiol 84: 2426-2439. PubMed: 11067985.
|
[45] | Ritter W, Vaughan HG, Costa LD (1968) Orienting and habituation to auditory stimuli: A study of short term changes in average evoked responses. Electroencephalogr Clin Neurophysiol 25: 550-556. doi:10.1016/0013-4694(68)90234-4. PubMed: 4178749.
|
[46] | J??skel?inen IP, Ahveninen J, Belliveau JW, Raij T, Sams M (2007) Short-term plasticity in auditory cognition. Trends Neurosci 30: 653-661. doi:10.1016/j.tins.2007.09.003. PubMed: 17981345.
|
[47] | Butler RA (1968) Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc AM 44: 945-950. doi:10.1121/1.1911233. PubMed: 5683660.
|
[48] | Coull JT (1998) Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343-361. doi:10.1016/S0301-0082(98)00011-2. PubMed: 9654384.
|
[49] | Michie PT, Bearpark HM, Crawford JM, Glue LCT (1990) The nature of selective attention effects on auditory event-related potentials. Biol Psychol 30: 219-250. doi:10.1016/0301-0511(90)90141-I. PubMed: 2282370.
|
[50] | Michie PT, Solowij N, Crawford JM, Glue LC (1993) The effects of between-source discriminability on attended and unattended auditory ERPs. Psychophysiology 30: 205-220. doi:10.1111/j.1469-8986.1993.tb01733.x. PubMed: 8434083.
|
[51] | Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115: 732-744. doi:10.1016/j.clinph.2003.11.021. PubMed: 15003751.
|
[52] | Krug K (2004) A common neuronal code for perceptual processes in visual cortex? Comparing choice and attentional correlates in V5/MT. Philos Trans R Soc Lond B Biol Sci 359: 929-941. doi:10.1098/rstb.2003.1415. PubMed: 15306408.
|
[53] | Ress D, Backus BT, Heeger DJ (2000) Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3: 940-945. doi:10.1038/78856. PubMed: 10966626.
|
[54] | Ritter W, Ford JM, Gaillard AWK, Harter MR, Kutas M et al. (1984) Cognition and event-related potentials. 1. The relation of negative potentials and cognitive processes. Ann N Y Acad Sci 425: 24-38. doi:10.1111/j.1749-6632.1984.tb23521.x. PubMed: 6588838.
|
[55] | Ritter W, Simson R, Vaughan HG, Friedman D (1979) A brain event related to the making of a sensory discrimination. Science 203: 1358-1361. doi:10.1126/science.424760. PubMed: 424760.
|
[56] | Patel SH, Azzam PN (2005) Characterization of N200 and P300: Selected studies of the event-related potential. Int J Med Sci 2: 147-154. PubMed: 16239953.
|
[57] | Braida LD, Lim JS, Berliner JE, Durlach NI, Rabinowitz WM et al. (1984) Intensity perception. XIII. Perceptual anchor model of context-coding. J Acoust Soc AM 76: 722-731. doi:10.1121/1.391258. PubMed: 6491044.
|
[58] | Loftus GR, Masson MEJ (1994) Using confidence-intervals in within-subject designs. Psychon B Rev 1: 476-490. doi:10.3758/BF03210951 . doi:10.3758/Bf03210951.
|