全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Human Decision Making Based on Variations in Internal Noise: An EEG Study

DOI: 10.1371/journal.pone.0068928

Full-Text   Cite this paper   Add to My Lib

Abstract:

Perceptual decision making is prone to errors, especially near threshold. Physiological, behavioural and modeling studies suggest this is due to the intrinsic or ‘internal’ noise in neural systems, which derives from a mixture of bottom-up and top-down sources. We show here that internal noise can form the basis of perceptual decision making when the external signal lacks the required information for the decision. We recorded electroencephalographic (EEG) activity in listeners attempting to discriminate between identical tones. Since the acoustic signal was constant, bottom-up and top-down influences were under experimental control. We found that early cortical responses to the identical stimuli varied in global field power and topography according to the perceptual decision made, and activity preceding stimulus presentation could predict both later activity and behavioural decision. Our results suggest that activity variations induced by internal noise of both sensory and cognitive origin are sufficient to drive discrimination judgments.

References

[1]  Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics. New York: John Wiley & Sons. 455pp.
[2]  Croner LJ, Purpura K, Kaplan E (1993) Response variability in retinal ganglion cells of primates. Proc Natl Acad Sci U S A 90: 8128-8130. doi:10.1073/pnas.90.17.8128. PubMed: 8367474.
[3]  Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9: 292-303. doi:10.1038/nrn2258. PubMed: 18319728.
[4]  Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140-143. doi:10.1038/370140a0. PubMed: 8022482.
[5]  Hernández A, Zainos A, Romo R (2000) Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci U S A 97: 6191-6196. doi:10.1073/pnas.120018597. PubMed: 10811922.
[6]  Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13: 87-100. doi:10.1017/S095252380000715X. PubMed: 8730992.
[7]  Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21: 4809-4821. PubMed: 11425908.
[8]  Polonsky A, Blake R, Braun T, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3: 1153-1159. doi:10.1038/80676. PubMed: 11036274.
[9]  Thielscher A, Pessoa L (2007) Neural correlates of perceptual choice and decision making during fear-disgust discrimination. J Neurosci 27: 2908-2917. doi:10.1523/JNEUROSCI.3024-06.2007. PubMed: 17360913.
[10]  Kim YJ, Grabowecky M, Suzuki S (2006) Stochastic resonance in binocular rivalry. Vision Res 46: 392-406. doi:10.1016/j.visres.2005.08.009. PubMed: 16183099.
[11]  Sweeny TD, Grabowecky M, Kim YJ, Suzuki S (2011) Internal curvature signal and noise in low- and high-level vision. J Neurophysiol 105: 1236-1257. doi:10.1152/jn.00061.2010. PubMed: 21209356.
[12]  Bernasconi F, De Lucia M, Tzovara A, Manuel AL, Murray MM et al. (2011) Noise in brain activity engenders perception and influences discrimination sensitivity. J Neurosci 31: 17971-17981. doi:10.1523/JNEUROSCI.3715-11.2011. PubMed: 22159111.
[13]  Micheyl C, McDermott JH, Oxenham AJ (2009) Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Atten Percept Psychophys 71: 5-7. DOI 10.3758/APP.71.1.5.
[14]  Neri P (2010) How inherently noisy is human sensory processing? Psychon B Rev 17: 802-808. doi:10.3738/Pbr.17.6.802. PubMed: 21169572.
[15]  Amitay S, Irwin A, Moore DR (2006) Discrimination learning induced by training with identical stimuli. Nat Neurosci 9: 1446-1448. doi:10.1038/nn1787. PubMed: 17028582.
[16]  British . Society of Audiology (2004) Pure tone air and bone conduction threshold audiometry with and without masking and determination of uncomfortable loudness levels. Reading: British Society of Audiology.
[17]  Halliday LF, Moore DR, Taylor JL, Amitay S (2011) Dimension-specific attention directs learning and listening on auditory training tasks. Atten Percept Psychophys 73: 1329-1335. DOI 10.3758/s13414-011-0148-0.
[18]  Haig AR, Gordon E (1998) Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time. Psychophysiology 35: 591-595. doi:10.1017/S0048577298970512. PubMed: 9715102.
[19]  Barry JG, Ferguson MA, Moore DR (2010) Making sense of listening: The IMAP Test Battery. J Vis Exp E 2139: ([MedlinePgn:]). doi:10.3791/2139. . PubMed : 20972412.
[20]  Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134: 9-21. doi:10.1016/j.jneumeth.2003.10.009. PubMed: 15102499.
[21]  Briley PM, Breakey C, Krumbholz K (2012) Evidence for pitch chroma mapping in human auditory cortex. Cereb Cortex 10. 1093/cercor/bhs242. . PubMed : 22918980.
[22]  Bell AJ, Sejnowski TJ (1995) An information maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159. doi:10.1162/neco.1995.7.6.1129. PubMed: 7584893.
[23]  Luck SJ (2005) Ten simple rules for designing ERP experiments. In: TC Handy. Event-Related Potentials: A Methods Handbook. Cambridge, MA: The MIT Press. pp. 17-32.
[24]  Ben-David BM, Campeanu S, Tremblay KL, Alain C (2011) Auditory evoked potentials dissociate rapid perceptual learning from task repetition without learning. Psychophysiology 48: 797-807. doi:10.1111/j.1469-8986.2010.01139.x. PubMed: 21054432.
[25]  Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: A step-by-step tutorial review. Brain Topogr 20: 249-264. doi:10.1007/s10548-008-0054-5. PubMed: 18347966.
[26]  Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology 48: 1711-1725. doi:10.1111/j.1469-8986.2011.01273.x. PubMed: 21895683.
[27]  N??t?nen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology 24: 375-425. doi:10.1111/j.1469-8986.1987.tb00311.x. PubMed: 3615753.
[28]  Zouridakis G, Simos PG, Papanicolaou AC (1998) Multiple bilaterally asymmetric cortical sources account for the auditory N1m component. Brain Topogr 10: 183-189. doi:10.1023/A:1022246825461. PubMed: 9562539.
[29]  Soltani M, Knight RT (2000) Neural Origins of the P300. Crit Rev Neurobiol 14: 199-224. PubMed: 12645958.
[30]  Rohrbaugh JW, Syndulko K, Lindsley DB (1978) Cortical slow negative waves following non-paired stimuli: Effects of task factors. Electroencephalogr Clin Neurophysiol 45: 551-567. doi:10.1016/0013-4694(78)90156-6. PubMed: 81758.
[31]  Ress D, Heeger DJ (2003) Neuronal correlates of perception in early visual cortex. Nat Neurosci 6: 414-420. doi:10.1038/nn1024. PubMed: 12627164.
[32]  Garrido MI, Kilner JM, Kiebel SJ, Friston KJ (2007) Evoked brain responses are generated by feedback loops. Proc Natl Acad Sci U S A 104: 20961-20966. doi:10.1073/pnas.0706274105. PubMed: 18087046.
[33]  Gilbert CD, Sigman M (2007) Brain states: Top-down influences in sensory processing. Neuron 54: 677-696. doi:10.1016/j.neuron.2007.05.019. PubMed: 17553419.
[34]  Sapir A, d’Avossa G, McAvoy M, Shulman GL, Corbetta M (2005) Brain signals for spatial attention predict performance in a motion discrimination task. Proc Natl Acad Sci U S A 102: 17810-17815. doi:10.1073/pnas.0504678102. PubMed: 16306268.
[35]  Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171-184. doi:10.1016/j.neuron.2007.08.023. PubMed: 17920023.
[36]  Wyart V, Tallon-Baudry C (2009) How ongoing fluctuations in human visual cortex predict perceptual awareness: Baseline shift versus decision bias. J Neurosci 29: 8715-8725. doi:10.1523/JNEUROSCI.0962-09.2009. PubMed: 19587278.
[37]  Hesselmann G, Kell CA, Eger E, Kleinschmidt A (2008) Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci U S A 105: 10984-10989. doi:10.1073/pnas.0712043105. PubMed: 18664576.
[38]  Bode S, Sewell DK, Lilburn S, Forte JD, Smith PL et al. (2012) Predicting perceptual decision biases from early brain activity. J Neurosci 32: 12488-12498. doi:10.1523/Jneurosci.1708-12.2012. PubMed: 22956839.
[39]  Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273: 1868-1871. doi:10.1126/science.273.5283.1868. PubMed: 8791593.
[40]  Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19: 2209-2223. PubMed: 10066274.
[41]  Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends Neurosci 27: 161-168. doi:10.1016/j.tins.2004.01.006. PubMed: 15036882.
[42]  Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86: 1916-1936. PubMed: 11600651.
[43]  Rinne T, Koistinen S, Salonen O, Alho K (2009) Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks. J Neurosci 29: 13338-13343. doi:10.1523/Jneurosci.3012-09.2009. PubMed: 19846721.
[44]  Biermann S, Heil P (2000) Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. J Neurophysiol 84: 2426-2439. PubMed: 11067985.
[45]  Ritter W, Vaughan HG, Costa LD (1968) Orienting and habituation to auditory stimuli: A study of short term changes in average evoked responses. Electroencephalogr Clin Neurophysiol 25: 550-556. doi:10.1016/0013-4694(68)90234-4. PubMed: 4178749.
[46]  J??skel?inen IP, Ahveninen J, Belliveau JW, Raij T, Sams M (2007) Short-term plasticity in auditory cognition. Trends Neurosci 30: 653-661. doi:10.1016/j.tins.2007.09.003. PubMed: 17981345.
[47]  Butler RA (1968) Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc AM 44: 945-950. doi:10.1121/1.1911233. PubMed: 5683660.
[48]  Coull JT (1998) Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343-361. doi:10.1016/S0301-0082(98)00011-2. PubMed: 9654384.
[49]  Michie PT, Bearpark HM, Crawford JM, Glue LCT (1990) The nature of selective attention effects on auditory event-related potentials. Biol Psychol 30: 219-250. doi:10.1016/0301-0511(90)90141-I. PubMed: 2282370.
[50]  Michie PT, Solowij N, Crawford JM, Glue LC (1993) The effects of between-source discriminability on attended and unattended auditory ERPs. Psychophysiology 30: 205-220. doi:10.1111/j.1469-8986.1993.tb01733.x. PubMed: 8434083.
[51]  Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115: 732-744. doi:10.1016/j.clinph.2003.11.021. PubMed: 15003751.
[52]  Krug K (2004) A common neuronal code for perceptual processes in visual cortex? Comparing choice and attentional correlates in V5/MT. Philos Trans R Soc Lond B Biol Sci 359: 929-941. doi:10.1098/rstb.2003.1415. PubMed: 15306408.
[53]  Ress D, Backus BT, Heeger DJ (2000) Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3: 940-945. doi:10.1038/78856. PubMed: 10966626.
[54]  Ritter W, Ford JM, Gaillard AWK, Harter MR, Kutas M et al. (1984) Cognition and event-related potentials. 1. The relation of negative potentials and cognitive processes. Ann N Y Acad Sci 425: 24-38. doi:10.1111/j.1749-6632.1984.tb23521.x. PubMed: 6588838.
[55]  Ritter W, Simson R, Vaughan HG, Friedman D (1979) A brain event related to the making of a sensory discrimination. Science 203: 1358-1361. doi:10.1126/science.424760. PubMed: 424760.
[56]  Patel SH, Azzam PN (2005) Characterization of N200 and P300: Selected studies of the event-related potential. Int J Med Sci 2: 147-154. PubMed: 16239953.
[57]  Braida LD, Lim JS, Berliner JE, Durlach NI, Rabinowitz WM et al. (1984) Intensity perception. XIII. Perceptual anchor model of context-coding. J Acoust Soc AM 76: 722-731. doi:10.1121/1.391258. PubMed: 6491044.
[58]  Loftus GR, Masson MEJ (1994) Using confidence-intervals in within-subject designs. Psychon B Rev 1: 476-490. doi:10.3758/BF03210951 . doi:10.3758/Bf03210951.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133