全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

DdrA, DdrD, and PprA: Components of UV and Mitomycin C Resistance in Deinococcus radiodurans R1

DOI: 10.1371/journal.pone.0069007

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mutants created by deleting the ddrA, ddrB, ddrC, ddrD, and pprA loci of Deinococcus radiodurans R1alone and in all possible combinations of pairs revealed that the encoded gene products contribute to this species’ resistance to UV light and/or mitomycin C. Deleting pprA from an otherwise wild type cell sensitizes the resulting strain to UV irradiation, reducing viability by as much as eight fold relative to R1. If this deletion is introduced into a ΔddrA or ΔddrD background, the resulting strains become profoundly sensitive to the lethal effects of UV light. At a fluence of 1000 Jm-2, the ΔddrA ΔpprA and ΔddrD ΔpprA strains are 100- and 1000-fold more sensitive to UV relative to the strain that has only lost pprA. Deletion of ddrA results in a 100 fold increase in strain sensitivity to mitomycin C, but in backgrounds that combine a deletion of ddrA with deletions of either ddrC or ddrD, mitomycin resistance is restored to wild type levels. Inactivation of ddrB also increases D. radiodurans sensitivity to mitomycin, but unlike the ddrA mutant deleting ddrC or ddrD from a ΔddrB background further increases that sensitivity. Despite the effect that loss of these gene products has on DNA damage resistance, none appear to directly affect either excision repair or homologous recombination suggesting that they participate in novel processes that facilitate tolerance to UV light and interstrand crosslinks in this species.

References

[1]  Battista JR, Rainey FA (2001) Phylum BIV. "Deinococcus-Thermus" Family 1. Deinococcaceae Brooks and Murray 1981, 356,vp emend. Rainey, Nobre, Schumann, Stackebrandt and da Costa 1997, 513. In: DR BooneRW Castenholz. Bergey's Manual of Systematic Bacteriology. 2nd ed. New York: Springer Verlag. pp. 395-414.
[2]  Cox MM, Battista JR (2005) Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 3: 882-892. doi:10.1038/nrmicro1264. PubMed: 16261171.
[3]  Moseley BEB (1983) Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. Photochem Photobiol Rev 7: 223-275.
[4]  Moseley BE, Mattingly A (1971) Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol 105: 976-983. PubMed: 4929286.
[5]  Sweet DM, Moseley BE (1974) Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans. Mutat Res 23: 311-318. doi:10.1016/0027-5107(74)90104-3. PubMed: 4407662.
[6]  Boling ME, Setlow JK (1966) The resistance of Micrococcus radiodurans to ultraviolet radiation. 3. A repair mechanism. Biochim Biophys Acta 123: 26-33. doi:10.1016/0005-2787(66)90155-9. PubMed: 5964047.
[7]  Varghese AJ, Day RS 3rd (1970) Excision of cytosine-thymine adduct from the DNA of ultraviolet-irradiated Micrococcus radiodurans. Photochem Photobiol 11: 511-517. doi:10.1111/j.1751-1097.1970.tb06022.x. PubMed: 5456276.
[8]  White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD et al. (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571-1577. doi:10.1126/science.286.5444.1571. PubMed: 10567266.
[9]  Earl AM, Rankin SK, Kim KP, Lamendola ON, Battista JR (2002) Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 184: 1003-1009. doi:10.1128/jb.184.4.1003-1009.2002. PubMed: 11807060.
[10]  Moseley BE, Evans DM (1983) Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J Gen Microbiol 129(8): 2437-2445. PubMed: 6415229.
[11]  Bowman KK, Sidik K, Smith CA, Taylor JS, Doetsch PW et al. (1994) A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res 22: 3026-3032. doi:10.1093/nar/22.15.3026. PubMed: 8065916.
[12]  Takao M, Yonemasu R, Yamamoto K, Yasui A (1996) Characterization of a UV endonuclease gene from the fission yeast Schizosaccharomyces pombe and its bacterial homolog. Nucleic Acids Res 24: 1267-1271. doi:10.1093/nar/24.7.1267. PubMed: 8614629.
[13]  Gutman PD, Fuchs P, Minton KW (1994) Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat Res 314: 87-97. doi:10.1016/0921-8777(94)90064-7. PubMed: 7504195.
[14]  Gutman PD, Fuchs P, Ouyang L, Minton KW (1993) Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J Bacteriol 175: 3581-3590. PubMed: 8501062.
[15]  Gutman PD, Carroll JD, Masters CI, Minton KW (1994) Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene 141: 31-37. doi:10.1016/0378-1119(94)90124-4. PubMed: 8163172.
[16]  Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA et al. (2004) Analysis of Deinococcus radiodurans’ transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168: 21-33. doi:10.1534/genetics.104.029249. PubMed: 15454524.
[17]  Earl AM, Mohundro MM, Mian IS, Battista JR (2002) The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184: 6216-6224. doi:10.1128/JB.184.22.6216-6224.2002. PubMed: 12399492.
[18]  Mattimore V, Udupa KS, Berne GA, Battista JR (1995) Genetic characterization of forty ionizing radiation-sensitive strains of Deinococcus radiodurans: linkage information from transformation. J Bacteriol 177: 5232-5237. PubMed: 7665511.
[19]  Dronkert ML, Kanaar R (2001) Repair of DNA interstrand cross-links. Mutat Res 486: 217-247. doi:10.1016/S0921-8777(01)00092-1. PubMed: 11516927.
[20]  Tomasz M, Chowdary D, Lipman R, Shimotakahara S, Veiro D et al. (1986) Reaction of DNA with chemically or enzymatically activated mitomycin C: isolation and structure of the major covalent adduct. Proc Natl Acad Sci U S A 83: 6702-6706. doi:10.1073/pnas.83.18.6702. PubMed: 3018744.
[21]  Tomasz M, Lipman R, Lee MS, Verdine GL, Nakanishi K (1987) Reaction of acid-activated mitomycin C with calf thymus DNA and model guanines: elucidation of the base-catalyzed degradation of N7-alkylguanine nucleosides. Biochemistry 26: 2010-2027. doi:10.1021/bi00381a034. PubMed: 3109476.
[22]  Moseley BE, Copland HJ (1975) Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans. J Bacteriol 121: 422-428. PubMed: 1112771.
[23]  Moseley BE, Copland HJR (1978) Four mutants of Micrococcus radiodurans defective in the ability to repair DNA damaged by mitomycin-C, two of which have wild-type resistance to ultraviolet radiation. Mol Gen Genet 160: 331-337. doi:10.1007/BF00332977. PubMed: 672894.
[24]  Harris DR, Tanaka M, Saveliev SV, Jolivet E, Earl AM et al. (2004) Preserving Genome Integrity: the DdrA protein of Deinococcus radiodurans R1. PLOS Biol 10: e304. PubMed: 15361932.
[25]  Blasius M, Sommer S, Hübscher U (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43: 221-238. doi:10.1080/10409230802122274. PubMed: 18568848.
[26]  Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75: 133-191. doi:10.1128/MMBR.00015-10. PubMed: 21372322.
[27]  Hansen MT (1982) Rescue of mitomycin C- or psoralen-inactivated Micrococcus radiodurans by additional exposure to radiation or alkylating agents. J Bacteriol 152: 976-982. PubMed: 6815165.
[28]  Kitayama S (1982) Adaptive repair of cross-links in DNA of Micrococcus radiodurans. Biochim Biophys Acta 697: 381-384. doi:10.1016/0167-4781(82)90103-8. PubMed: 7104365.
[29]  Kitayama S, Asaka S, Totsuka K (1983) DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol 155: 1200-1207. PubMed: 6411683.
[30]  Lawley PD, Brookes P (1968) Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids. Biochem J 109: 433-447. PubMed: 4879534.
[31]  Howard-Flanders P, Boyce RP (1966) DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res Suppl: 6: 156+. . PubMed : 5334390.
[32]  Howard-Flanders P, Theriot L (1966) Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53: 1137-1150. PubMed: 5335129.
[33]  de Groot A, Dulermo R, Ortet P, Blanchard L, Guérin P et al. (2009) Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLOS Genet 5: e1000434. PubMed: 19370165.
[34]  Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW et al. (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65: 44-79. doi:10.1128/MMBR.65.1.44-79.2001. PubMed: 11238985.
[35]  Yuan M, Zhang W, Dai S, Wu J, Wang Y et al. (2009) Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 59: 1513-1517. doi:10.1099/ijs.0.004523-0. PubMed: 19502345.
[36]  Narumi I, Satoh K, Cui S, Funayama T, Kitayama S et al. (2004) PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54: 278-285. doi:10.1111/j.1365-2958.2004.04272.x. PubMed: 15458422.
[37]  Kota S, Misra HS (2006) PprA: A protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 72: 790-796. doi:10.1007/s00253-006-0340-7. PubMed: 16586106.
[38]  Misra HS, Khairnar NP, Kota S, Shrivastava S, Joshi VP et al. (2006) An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol 59: 1308-1316. doi:10.1111/j.1365-2958.2005.05005.x. PubMed: 16430702.
[39]  Daly MJ, Ling O, Minton KW (1994) Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 176: 7506-7515. PubMed: 8002574.
[40]  Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D et al. (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443: 569-573. PubMed: 17006450.
[41]  Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P et al. (2007) Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J Bacteriol 189: 3306-3311. doi:10.1128/JB.00018-07. PubMed: 17293412.
[42]  Iyer LM, Koonin EV, Aravind L (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genomics 3: 8. doi:10.1186/1471-2164-3-8. PubMed: 11914131.
[43]  Mortensen UH, Bendixen C, Sunjevaric I, Rothstein R (1996) DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A 93: 10729-10734. doi:10.1073/pnas.93.20.10729. PubMed: 8855248.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133