全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Understanding Linkage Rules in Plant-Pollinator Networks by Using Hierarchical Models That Incorporate Pollinator Detectability and Plant Traits

DOI: 10.1371/journal.pone.0069200

Full-Text   Cite this paper   Add to My Lib

Abstract:

The analysis of mutualistic networks has become a central tool in answering theoretical and applied questions regarding our understanding of ecological processes. Significant gaps in knowledge do however need to be bridged in order to effectively and accurately be able to describe networks. Main concern are the incorporation of species level information, accounting for sampling limitations and understanding linkage rules. Here I propose a simple method to combine plant pollinator effort-limited sampling with information about plant community to gain understanding of what drives linkage rules, while accounting for possible undetected linkages. I use hierarchical models to estimate the probability of detection of each plant-pollinator interaction in 12 Mediterranean plant-pollinator networks. As it is possible to incorporate plant traits as co-variables in the models, this method has the potential to be used for predictive purposes, such as identifying undetected links among existing species, as well as potential interactions with new plant species. Results show that pollinator detectability is very skewed and usually low. Nevertheless, 84% of the models are enhanced by the inclusion of co-variables, with flower abundance and inflorescence type being the most commonly retained co-variables. The predicted networks increase network Connectance by 13%, but not Nestedness, which is known to be robust to sampling effects. However, 46% of the pollinator interactions in the studied networks comprised a single observation and hence could not be modeled. The hierarchical modeling approach suggested here is highly flexible and can be used on binary or frequency networks, accommodate different observers or include collection day weather variables as confounding factors. An R script is provided for a rapid adoption of this method.

References

[1]  Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: The architecture of biodiversity. Annu Rev Ecol Evol Syst 38: 567–593. doi:10.1146/annurev.ecolsys.38.091206.095818.
[2]  Dobson A, Lodge D, Alder J, Cumming GS, Keymer J et al. (2006) Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87: 1915–1924. doi:10.1890/0012-9658(2006)87[1915:HLTCAT]2.?0.CO;2. PubMed: 16937628.
[3]  Bascompte J (2007) Networks in ecology. Basic Appl. Ecol. 8: 485–490.
[4]  Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant-animal interactions. Ecol Lett 6: 69–81.
[5]  Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100: 9383–9387. doi:10.1073/pnas.1633576100. PubMed: 12881488.
[6]  Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431–433. doi:10.1126/science.1123412. PubMed: 16627742.
[7]  Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc Biol Sci 271: 2605–2611. doi:10.1098/rspb.2004.2909. PubMed: 15615687.
[8]  Ollerton J, Cranmer L (2002) Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 2: 340–345.
[9]  Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83: 2416–2424. doi:10.1890/0012-9658(2002)083[2416:GPIPPM]2?.0.CO;2.
[10]  Devoto M, Medan D, Montaldo NH (2005) Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109: 461–472. doi:10.1111/j.0030-1299.2005.13712.x.
[11]  Tr?jelsgaard K, Olesen JM (2012) Macroecology of pollination networks. Glob Ecol Biogeogr 22: 149–162.
[12]  Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-dewenter I et al. (2009) Invasive plant integration into native plant ? pollinator networks across Europe. Proc R Soc Lond B 276: 2887–3893. doi:10.1098/rspb.2009.0551.
[13]  Pocock MJ, Evans DM, Memmott J (2012) The robustness and restoration of a network of ecological networks. Science 335: 973–977. doi:10.1126/science.1214915. PubMed: 22363009.
[14]  Goldwasser L, Roughgarden J (1997) Sampling effects and the estimation of food-web properties. Ecology 78: 41–54. doi:10.1890/0012-9658(1997)078[0041:SEATEO]2?.0.CO;2.
[15]  Blüthgen N (2010) Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl. Ecol. 11: 185–195.
[16]  Rivera-Hutinel A, Bustamante RO, Marín VH, Medel R (2012) Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93: 1593–1603. doi:10.1890/11-1803.1. PubMed: 22919906.
[17]  Hegland S, Dunne J, Nielsen A, Memmott J (2010) How to monitor ecological communities cost-efficiently: The example of plant–pollinator networks. Biol Conserv 143: 2092–2101. doi:10.1016/j.biocon.2010.05.018.
[18]  Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J et al. (2012) Evaluating sampling completeness in a desert plant-pollinator network. J Anim Ecol 81: 190–200. doi:10.1111/j.1365-2656.2011.01883.x. PubMed: 21815890.
[19]  Nielsen A, Bascompte J (2007) Ecological networks, nestedness and sampling effort. J Ecol 95: 1134–1141. doi:10.1111/j.1365-2745.2007.01271.x.
[20]  Dormann C, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J. 2: 7–24. doi:10.2174/1874213000902010007.
[21]  Blüthgen N, Fründ J, Vázquez DP, Menzel F (2008) What do interaction network metrics tell us about specialization and biological traits? Ecology 89: 3387–3399. doi:10.1890/07-2121.1. PubMed: 19137945.
[22]  Dorado J, Vázquez DP, Stevani EL, Chacoff NP (2011) Rareness and specialization in plant-pollinator networks. Ecology 92: 19–25. doi:10.1890/10-0794.1. PubMed: 21560672.
[23]  Bosch J, Retana J, Cerdá X (1997) Flowering phenology, floral traits and pollinator composition in a herbaceous Mediterranean plant community. Oecologia 109: 583–591. doi:10.1007/s004420050120.
[24]  Hegland SJ, Totland ? (2005) Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia 145: 586–594. doi:10.1007/s00442-005-0165-6. PubMed: 16028095.
[25]  Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant-pollinator networks: Trait complementarity or exploitation barriers? PLOS Biol 5: e31. doi:10.1371/journal.pbio.0050031. PubMed: 17253905.
[26]  Stang M, Klinkhamer PG, Waser NM, Stang I, Van der Meijden E (2009) Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann Bot 103: 1459–1469. doi:10.1093/aob/mcp027. PubMed: 19228701.
[27]  Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C et al. (2011) Missing and forbidden links in mutualistic networks. Proc Biol Sci 278: 725–732. doi:10.1098/rspb.2010.1371. PubMed: 20843845.
[28]  Encinas-Viso F, Revilla TA, Etienne RS (2012) Phenology drives mutualistic network structure and diversity. Ecol Lett 15: 198–208. doi:10.1111/j.1461-0248.2011.01726.x. PubMed: 22236277.
[29]  Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J et al. (2012) Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol. doi:10.1111/1365-2435.12005.
[30]  Bosch J, González AM, Rodrigo A, Navarro D (2009) Plant-pollinator networks: adding the pollinator’s perspective. Ecol Lett 12: 409–419. doi:10.1111/j.1461-0248.2009.01296.x. PubMed: 19379135.
[31]  Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. Am Nat 129: 657–677. doi:10.1086/284665.
[32]  Sorensen P, Damgaard C, Strandberg B, Dupont YL, Pedersen M et al. (2012) A method for under-sampled ecological network data analysis: Plant-pollinator as a case study. J Pollination Ecol 6: 129–139.
[33]  Wells K, O’Hara R (2012) Species interactions: estimating per-individual interaction strength and covariates before simplifying data into per species ecological networks. Methods Ecol Evol 4: 1–8.
[34]  MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J et al. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248–2255. doi:10.1890/0012-9658(2002)083[2248:ESORWD]2?.0.CO;2.
[35]  Fiske I, Chandler R (2011) Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Soft. 43.
[36]  Cressie N, Calder CA, Clark JS (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19: 553–570. doi:10.1890/07-0744.1. PubMed: 19425416.
[37]  Royle J, Dorazio R (2008) Hierarchical modeling and inference in ecology. London: Academic Press.
[38]  Bartomeus I, Vilà M, Santamaría L (2008) Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155: 761–770. doi:10.1007/s00442-007-0946-1. PubMed: 18188603.
[39]  Royle JA (2004) N-Mixture Models for Estimating Population Size from Spatially Replicated Counts. Biometrics, 60: 108–115. doi:10.1111/j.0006-341X.2004.00142.x. PubMed: 15032780.
[40]  Anderson D, Burnham K, Thompson W (2000) Null hypothesis testing: Problems, prevalence, and an alternative. J Wildl Manag 64: 912–923. doi:10.2307/3803199.
[41]  Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6: 9. doi:10.1186/1472-6785-6-9. PubMed: 16907983.
[42]  Fründ J, Linsenmair KE, Blüthgen N (2010) Pollinator diversity and specialization in relation to flower diversity. Oikos 119: 1581–1590. doi:10.1111/j.1600-0706.2010.18450.x.
[43]  Heinrich B (1975) Energetics of pollination. Annu Rev Ecol Evol Syst 6: 139–170. doi:10.1146/annurev.es.06.110175.001035.
[44]  Essenberg CJ (2012) Explaining variation in the effect of floral density on pollinator visitation. Am Nat 180: 153–166. doi:10.1086/666610. PubMed: 22766928.
[45]  Chittka L, Thomson JD (2005) Cognitive ecology of pollination: Animal behaviour and floral evolution. Cambridge University Press.
[46]  Gibson RH, Knott B, Eberlein T, Memmott J (2011) Sampling method influences the structure of plant-pollinator networks. Oikos 120: 822–831. doi:10.1111/j.1600-0706.2010.18927.x.
[47]  Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci U S A 98: 3898–3903. doi:10.1073/pnas.071053098. PubMed: 11259668.
[48]  Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc Lond B 266: 1711–1716. doi:10.1098/rspb.1999.0836.
[49]  Endress PK (2001) Origins of Flower Morphology. J Exp Zool 291: 105–115. doi:10.1002/jez.1063. PubMed: 11479912.
[50]  Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13: 442–445. doi:10.1111/j.1461-0248.2009.01437.x. PubMed: 20100244.
[51]  Colwell RK, Dunn RR, Harris NC (2012) Coextinction and Persistence of Dependent Species in a Changing World. Annu Rev Ecol Evol Syst 43: 183–203. doi:10.1146/annurev-ecolsys-110411-160304.
[52]  Gibson M, Richardson D, Pauw A (2012) Can floral traits predict an invasive plant’s impact on native plant–pollinator communities? J Ecol 100: 1216–1223. doi:10.1111/j.1365-2745.2012.02004.x.
[53]  Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12: 716–728. doi:10.1111/j.1461-0248.2009.01319.x. PubMed: 19453616.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133