全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Using High-Throughput Sequencing to Leverage Surveillance of Genetic Diversity and Oseltamivir Resistance: A Pilot Study during the 2009 Influenza A(H1N1) Pandemic

DOI: 10.1371/journal.pone.0067010

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Influenza viruses display a high mutation rate and complex evolutionary patterns. Next-generation sequencing (NGS) has been widely used for qualitative and semi-quantitative assessment of genetic diversity in complex biological samples. The “deep sequencing” approach, enabled by the enormous throughput of current NGS platforms, allows the identification of rare genetic viral variants in targeted genetic regions, but is usually limited to a small number of samples. Methodology and Principal Findings We designed a proof-of-principle study to test whether redistributing sequencing throughput from a high depth-small sample number towards a low depth-large sample number approach is feasible and contributes to influenza epidemiological surveillance. Using 454-Roche sequencing, we sequenced at a rather low depth, a 307 bp amplicon of the neuraminidase gene of the Influenza A(H1N1) pandemic (A(H1N1)pdm) virus from cDNA amplicons pooled in 48 barcoded libraries obtained from nasal swab samples of infected patients (n = 299) taken from May to November, 2009 pandemic period in Mexico. This approach revealed that during the transition from the first (May-July) to second wave (September-November) of the pandemic, the initial genetic variants were replaced by the N248D mutation in the NA gene, and enabled the establishment of temporal and geographic associations with genetic diversity and the identification of mutations associated with oseltamivir resistance. Conclusions NGS sequencing of a short amplicon from the NA gene at low sequencing depth allowed genetic screening of a large number of samples, providing insights to viral genetic diversity dynamics and the identification of genetic variants associated with oseltamivir resistance. Further research is needed to explain the observed replacement of the genetic variants seen during the second wave. As sequencing throughput rises and library multiplexing and automation improves, we foresee that the approach presented here can be scaled up for global genetic surveillance of influenza and other infectious diseases.

References

[1]  Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, et al. (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197–201.
[2]  Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, et al. (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 12: 687–695.
[3]  Pizzorno A, Abed Y, Boivin G (2011) Influenza drug resistance. Semin Respir Crit Care Med 32: 409–422.
[4]  Holmes EC (2009) RNA virus genomics: a world of possibilities. J Clin Invest 119: 2488–2495.
[5]  Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, et al. (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52: 3284–3292.
[6]  Dharan NJ, Gubareva LV, Meyer JJ, Okomo-Adhiambo M, McClinton RC, et al. (2009) Infections with oseltamivir-resistant Influenza A(H1N1) virus in the United States. JAMA 301: 1034–1041.
[7]  Renaud C, Kuypers J, Englund JA (2011) Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 52: 70–78.
[8]  Hurt AC, Lee RT, Leang SK, Cui L, Deng YM, et al. (2011) Increased detection in Australia and Singapore of a novel influenza AH1N1 2009 variant with reduced oseltamivir and zanamivir sensitivity due to a S247N neuraminidase mutation. Euro Surveill 16: 19884.
[9]  van der Vries E, Schutten M, Boucher CA (2011) The potential for multidrug-resistant influenza. Curr Opin Infect Dis 24: 599–604.
[10]  Rameix-Welti MA, Enouf V, Cuvelier F, Jeannin P, van der Werf S (2008) Enzymatic properties of the neuraminidase of seasonal H1N1 influenza viruses provide insights for the emergence of natural resistance to oseltamivir. PLoS Pathog 4: e1000103.
[11]  Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328: 1272–1275.
[12]  Hensley SE, Das SR, Gibbs JS, Bailey AL, Schmidt LM, et al. (2011) Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS One 6: e15190.
[13]  Lipsitch M, Hayden FG, Cowling BJ, Leung GM (2009) How to maintain surveillance for novel influenza A H1N1 when there are too many cases to count. The Lancet 374: 1209–1211.
[14]  Brockhurst MA, Colegrave N, Rozen DE (2011) Next-generation sequencing as a tool to study microbial evolution. Mol Ecol 20: 972–980.
[15]  Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14: 13–22.
[16]  Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, et al. (2009) Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One 4: e4219.
[17]  Kuroda M, Katano H, Nakajima N, Tobiume M, Ainai A, et al. (2010) Characterization of quasispecies of pandemic 2009 influenza A virus (A/H1N1/2009) by de novo sequencing using a next-generation DNA sequencer. PLoS One 5: e10256.
[18]  Greninger AL, Chen EC, Sittler T, Scheinerman A, Roubinian N, et al. (2010) A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS One 5: e13381.
[19]  Hoffmann C, Minkah N, Leipzig J, Wang G, Arens MQ, et al. (2007) DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic Acids Res 35: e91.
[20]  Mitsuya Y, Varghese V, Wang C, Liu TF, Holmes SP, et al. (2008) Minority human immunodeficiency virus type 1 variants in antiretroviral-naive persons with reverse transcriptase codon 215 revertant mutations. J Virol 82: 10747–10755.
[21]  Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW (2007) Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17: 1195–1201.
[22]  Cai F, Chen H, Hicks CB, Bartlett JA, Zhu J, et al. (2007) Detection of minor drug-resistant populations by parallel allele-specific sequencing. Nat Methods 4: 123–125.
[23]  Ramakrishnan MA, Tu ZJ, Singh S, Chockalingam AK, Gramer MR, et al. (2009) The feasibility of using high resolution genome sequencing of influenza A viruses to detect mixed infections and quasispecies. PLoS One 4: e7105.
[24]  Selleri M, Piralla A, Rozera G, Giombini E, Bartolini B, et al.. (2012) Detection of haemagglutinin D222 polymorphisms in Influenza A(H1N1)pdm09-infected patients by ultra-deep pyrosequencing. Clin Microbiol Infect.
[25]  Ghedin E, Holmes EC, Depasse JV, Pinilla LT, Fitch A, et al. (2012) Presence of Oseltamivir-Resistant Pandemic A/H1N1 Minor Variants Before Drug Therapy With Subsequent Selection and Transmission. J Infect Dis 206: 1504–1511.
[26]  Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.
[27]  Alteri C, Santoro MM, Abbate I, Rozera G, Bruselles A, et al. (2011) 'Sentinel' mutations in standard population sequencing can predict the presence of HIV-1 reverse transcriptase major mutations detectable only by ultra-deep pyrosequencing. J Antimicrob Chemother 66: 2615–2623.
[28]  Nelson M, Spiro D, Wentworth D, Beck E, Fan J, et al. (2009) The early diversification of influenza A/H1N1pdm. PLoS Currents 1: RRN1126.
[29]  Fereidouni SR, Beer M, Vahlenkamp T, Starick E (2009) Differentiation of two distinct clusters among currently circulating Influenza A(H1N1)v viruses. Eurosurveillance, Volume 14, Issue 46.
[30]  Morlighem JE, Aoki S, Kishima M, Hanami M, Ogawa C, et al. (2011) Mutation analysis of 2009 pandemic Influenza A(H1N1) viruses collected in Japan during the peak phase of the pandemic. PLoS One 6: e18956.
[31]  Gubareva LV, Trujillo AA, Okomo-Adhiambo M, Mishin VP, Deyde VM, et al. (2010) Comprehensive assessment of 2009 pandemic influenza A (H1N1) virus drug susceptibility in vitro. Antivir Ther 15: 1151–1159.
[32]  Flaherty P, Natsoulis G, Muralidharan O, Winters M, Buenrostro J, et al. (2012) Ultrasensitive detection of rare mutations using next-generation targeted resequencing. Nucleic Acids Res 40: e2.
[33]  Chowell G, Echevarria-Zuno S, Viboud C, Simonsen L, Tamerius J, et al. (2011) Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico. PLoS Med 8: e1000436.
[34]  Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB (2011) Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genetics 7: e1001301.
[35]  Holmes EC, Ghedin E, Halpin RA, Stockwell TB, Zhang XQ, et al. (2011) Extensive geographical mixing of 2009 human H1N1 influenza A virus in a single university community. J Virol 85: 6923–6929.
[36]  Ramirez-Gonzalez JE, Gonzalez-Duran E, Alcantara-Perez P, Wong-Arambula C, Olivera-Diaz H, et al. (2011) Oseltamivir-resistant pandemic (H1N1) 2009 virus, Mexico. Emerg Infect Dis 17: 283–286.
[37]  Zagordi O, Daumer M, Beisel C, Beerenwinkel N (2012) Read length versus Depth of Coverage for Viral Quasispecies Reconstruction. PLoS One 7: e47046.
[38]  Hoper D, Hoffmann B, Beer M (2011) A comprehensive deep sequencing strategy for full-length genomes of influenza A. PLoS One. 6: e19075.
[39]  Kozarewa I, Turner DJ (2011) 96-plex molecular barcoding for the Illumina Genome Analyzer. Methods Mol Biol 733: 279–298.
[40]  Tu J, Ge Q, Wang S, Wang L, Sun B, et al. (2012) Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis. BMC Genomics 13: 43.
[41]  Erlich Y, Chang K, Gordon A, Ronen R, Navon O, et al. (2009) DNA Sudoku-harnessing high-throughput sequencing for multiplexed specimen analysis. Genome Res 19: 1243–1253.
[42]  Lennon NJ, Lintner RE, Anderson S, Alvarez P, Barry A, et al. (2010) A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. Genome Biol 11: R15.
[43]  Borgstrom E, Lundin S, Lundeberg J (2011) Large scale library generation for high throughput sequencing. PLoS One 6: e19119.
[44]  Hollants S, Redeker EJ, Matthijs G (2012) Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin Chem 58: 717–724.
[45]  Dudley DM, Chin EN, Bimber BN, Sanabani SS, Tarosso LF, et al. (2012) Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance. PLoS One 7: e36494.
[46]  Barzon L, Lavezzo E, Militello V, Toppo S, Palu G (2011) Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 12: 7861–7884.
[47]  Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428.
[48]  Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534–1541.
[49]  Ali SA, Steinkasserer A (1995) PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques 18: 746–750.
[50]  Balzer S, Malde K, Jonassen I (2011) Systematic exploration of error sources in pyrosequencing flowgram data. Bioinformatics 27: i304–309.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133