Niemann-Pick C (NPC) disease is due to loss of NPC1 or NPC2 protein function that is required for unesterified cholesterol transport from the endosomal/lysosomal compartment. Though lung involvement is a recognized characteristic of Niemann-Pick type C disease, the pathological features are not well understood. We investigated components of the surfactant system in both NPC1 mutant mice and felines and in NPC2 mutant mice near the end of their expected life span. Histological analysis of the NPC mutant mice demonstrated thickened septae and foamy macrophages/leukocytes. At the level of electron microscopy, NPC1-mutant type II cells had uncharacteristically larger lamellar bodies (LB, mean area 2-fold larger), while NPC2-mutant cells had predominantly smaller lamellar bodies (mean area 50% of normal) than wild type. Bronchoalveolar lavage from NPC1 and NPC2 mutant mice had an approx. 4-fold and 2.5-fold enrichment in phospholipid, respectively, and an approx. 9-fold and 35-fold enrichment in cholesterol, consistent with alveolar lipidosis. Phospholipid and cholesterol also were elevated in type II cell LBs and lung tissue while phospholipid degradation was reduced. Enrichment of surfactant protein-A in the lung and surfactant of the mutant mice was found. Immunocytochemical results showed that cholesterol accumulated in the LBs of the type II cells isolated from the affected mice. Alveolar macrophages from the NPC1 and NPC2 mutant mice were enlarged compared to those from wild type mice and were enriched in phospholipid and cholesterol. Pulmonary features of NPC1 mutant felines reflected the disease described in NPC1 mutant mice. Thus, with the exception of lamellar body size, the lung phenotype seen in the NPC1 and NPC2 mutant mice were similar. The lack of NPC1 and NPC2 proteins resulted in a disruption of the type II cell surfactant system contributing to pulmonary abnormalities.
References
[1]
Rosenbaum AI, Maxfield FR (2011) Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. Journal of neurochemistry 116: 789–795.
[2]
Griese M, Brasch F, Aldana VR, Cabrera MM, Goelnitz U, et al. (2010) Respiratory disease in Niemann-Pick type C2 is caused by pulmonary alveolar proteinosis. Clin Genet 77: 119–130.
[3]
Meiner V, Shpitzen S, Mandel H, Klar A, Ben-Neriah Z, et al. (2001) Clinical-biochemical correlation in molecularly characterized patients with Niemann-Pick type C. Genetics in medicine : official journal of the American College of Medical Genetics. 3: 343–348.
[4]
Millat G, Chikh K, Naureckiene S, Sleat DE, Fensom AH, et al. (2001) Niemann-Pick disease type C: spectrum of HE1 mutations and genotype/phenotype correlations in the NPC2 group. Am J Hum Genet 69: 1013–1021.
[5]
Vanier MT (2010) Niemann-Pick disease type C. Orphanet journal of rare diseases. 5: 16.
[6]
Manabe T, Yamane T, Higashi Y, Pentchev PG, Suzuki K (1995) Ultrastructural changes in the lung in Niemann-Pick type C mouse. Virchows Archiv : an international journal of pathology 427: 77–83.
[7]
Liu B, Ramirez CM, Miller AM, Repa JJ, Turley SD, et al. (2010) Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J Lipid Res 51: 933–944.
[8]
Morris MD, Bhuvaneswaran C, Shio H, Fowler S (1982) Lysosome lipid storage disorder in NCTR-BALB/c mice. I. Description of the disease and genetics. Am J Pathol 108: 140–149.
[9]
Somers KL, Royals MA, Carstea ED, Rafi MA, Wenger DA, et al. (2003) Mutation analysis of feline Niemann-Pick C1 disease. Mol Genet Metab 79: 99–103.
[10]
Brown DE, Thrall MA, Walkley SU, Wenger DA, Mitchell TW, et al. (1994) Feline Niemann-Pick disease type C. Am J Pathol. 144: 1412–1415.
[11]
King RJ, Clements JA (1972) Surface active materials from dog lung. II. Composition and physiological correlations. American Journal of Physiology 223: 715–726.
[12]
Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408: 90–108.
[13]
Gunasekara L, Schurch S, Schoel WM, Nag K, Leonenko Z, et al. (2005) Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochimica et biophysica acta 1737: 27–35.
[14]
Vockeroth D, Gunasekara L, Amrein M, Possmayer F, Lewis JF, et al. (2010) Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. American journal of physiology Lung cellular and molecular physiology 298: L117–125.
[15]
Leonenko Z, Gill S, Baoukina S, Monticelli L, Doehner J, et al. (2007) An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. Biophysical journal 93: 674–683.
[16]
Hass MA, Longmore WJ (1979) Surfactant cholesterol metabolism of the isolated perfused rat lung. Biochim Biophys Acta 573: 166–174.
[17]
Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, et al. (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277: 228–231.
[18]
Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, et al. (2000) Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290: 2298–2301.
[19]
Roszell BR, Tao JQ, Yu KJ, Huang S, Bates SR (2012) Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung. Am J Physiol Lung Cell Mol Physiol 302: L919–932.
[20]
Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, et al. (2008) NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci U S A 105: 15287–15292.
[21]
Deffieu MS, Pfeffer SR (2011) Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proceedings of the National Academy of Sciences of the United States of America 108: 18932–18936.
[22]
Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, et al. (2009) Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137: 1213–1224.
[23]
Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, et al. (2011) A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J Cell Biol 192: 121–135.
[24]
Ramirez CM, Liu B, Taylor AM, Repa JJ, Burns DK, et al. (2010) Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr Res 68: 309–315.
[25]
Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, et al. (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277: 232–235.
[26]
Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, et al. (2004) Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A 101: 5886–5891.
[27]
Ward S, O’Donnell P, Fernandez S, Vite CH (2010) 2-hydroxypropyl-beta-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann-Pick type C disease. Pediatr Res 68: 52–56.
[28]
Bortnick AE, Favari E, Tao JQ, Francone OL, Reilly M, et al. (2003) Identification and characterization of rodent ABCA1 in isolated type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 285: L869–878.
[29]
Chander A, Johnson RG, Reicherter J, Fisher AB (1986) Lung lamellar bodies maintain an acidic internal pH. The Journal of biological chemistry 261: 6126–6131.
[30]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
[31]
Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234: 466–468.
[32]
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Med Sci 37: 911–917.
[33]
Jain D, Dodia C, Bates SR, Hawgood S, Poulain FR, et al. (2003) SP-A is necessary for increased clearance of alveolar DPPC with hyperventilation or secretagogues. American journal of physiology Lung cellular and molecular physiology 284: L759–765.
[34]
Mason RJ, Nellenbogen J, Clements JA (1976) Isolation of disaturated phosphatidylcholine with osmium tetroxide. Journal of lipid research 17: 281–284.
[35]
Zhang M, Strnatka D, Donohue C, Hallows JL, Vincent I, et al. (2008) Astrocyte-only Npc1 reduces neuronal cholesterol and triples life span of Npc1?/? mice. Journal of neuroscience research 86: 2848–2856.
[36]
Gurel O, Ikegami M, Chroneos ZC, Jobe AH (2001) Macrophage and type II cell catabolism of SP-A and saturated phosphatidylcholine in mouse lungs. American journal of physiology Lung cellular and molecular physiology 280: L1266–1272.
[37]
Muralidhar A, Borbon IA, Esharif DM, Ke W, Manacheril R, et al. (2011) Pulmonary function and pathology in hydroxypropyl-beta-cyclodextin-treated and untreated Npc1/mice. Mol Genet Metab 103: 142–147.
[38]
Maue RA, Burgess RW, Wang B, Wooley CM, Seburn KL, et al. (2012) A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet 21: 730–750.
[39]
Guttentag SH, Akhtar A, Tao JQ, Atochina E, Rusiniak ME, et al. (2005) Defective surfactant secretion in a mouse model of Hermansky-Pudlak syndrome. Am J Respir Cell Mol Biol 33: 14–21.
[40]
Fisher AB (1998) Lung Surfactant Clearance and Cellular Processing. In: Rooney SA, Landes RG, editors. Lung surfactant: cellular and molecular processing. Austin, TX: Landes Bioscience. 165–189.
[41]
Besnard V, Matsuzaki Y, Clark J, Xu Y, Wert SE, et al. (2010) Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice. American journal of physiology Lung cellular and molecular physiology 298: L646–659.
[42]
Nakatani Y, Nakamura N, Sano J, Inayama Y, Kawano N, et al. (2000) Interstitial pneumonia in Hermansky-Pudlak syndrome: significance of florid foamy swelling/degeneration (giant lamellar body degeneration) of type-2 pneumocytes. Virchows Archiv : an international journal of pathology 437: 304–313.
[43]
Weaver TE, Na CL, Stahlman M (2002) Biogenesis of lamellar bodies, lysosome-related organelles involved in storage and secretion of pulmonary surfactant. Semin Cell Dev Biol 13: 263–270.
[44]
Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, et al. (2010) Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J Lipid Res 51: 1747–1760.
[45]
Orgeig S, Daniels CB (2001) The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comp Biochem Physiol A Mol Integr Physiol 129: 75–89.
[46]
Lee W, Xu M, Li Y, Gu Y, Chen J, et al. (2011) Free cholesterol accumulation impairs antioxidant activities and aggravates apoptotic cell death in menadione-induced oxidative injury. Archives of biochemistry and biophysics 514: 57–67.