全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation on the Textural Properties Tuning of Ordered Mesoporous Carbons with an Excellent Electrochemical Performance

DOI: 10.1155/2011/615164

Full-Text   Cite this paper   Add to My Lib

Abstract:

A synthetic method to produce mesoporous carbons with tunable textural properties and ordered pore structure has been developed by changing sucrose to water ratio. The specific surface area of 1437?m2/g with pore volume of 1.4?cm3/g and porosity of mesopores centered at around 4.4?nm are achieved by tuning the concentration of filling amount into mesoporous silica. The mesoporous carbon exhibits hexagonal rod-like morphology (a diameter of ~1.2? m), which confirms that the replication process is highly successful. It is demonstrated that the prepared mesoporous carbon exhibits much higher current density and superior performance as compared to conventional activated charcoal. 1. Introduction Ordered mesoporous carbons have attracted considerable attention in the past few years due to their applications in adsorption of larger molecules, electrochemical double layer capacitor, catalyst support, fuel cells, solar cells, and hydrogen storage systems [1–6]. These kinds of applications require porous carbon with tailored porous structure [7, 8]. Recently, several different methods have been developed to synthesize mesoporous carbons. These include the carbonization of polymer aerogels such as resorcinol-formaldehyde resins [9], the catalytic activation of carbon precursors in the presence of metals and organometallic compounds [10, 11], and carbonization of polymer blends with thermally unstable components [12, 13]. However, these methods result in having a mesoporous carbon with broad pore size distribution. Among them, template synthesis method [14–17] has been extensively used due to the obtained material possessing uniform and interconnected pores. The synthesis technique is known as “nanocasting.” This synthetic technique involves impregnation of silica template with an appropriate carbon source, carbonization of carbon precursor, and subsequent removal of silica. The resulting carbons are inverse replicas of ordered mesoporous silicas. Since the first successful synthesis of ordered mesoporous carbon (CMK-1) using MCM-48 [14], various structures have been reported from different silica templates. On the other hand, textural parameters such as surface area, pore volume, and pore diameter are found to be significantly influencing the electrocatalytic activity. In supported materials, mesoporous offers high metal dispersion and stability of nanoparticles. Although tuning the textural properties of mesoporous carbon is important for various catalytic and electrocatalytic studies, the effect of sucrose concentration on tuning the properties of mesoporous

References

[1]  P. Srinivasu, S. P. Singh, A. Islam, and L. Han, “Metal-free counter electrode for efficient dye-sensitized solar cells through high surface area and large-porous carbon,” International Journal of Photoenergy, vol. 2011, Article ID 617439, 2011.
[2]  P. Srinivasu, S. P. Singh, A. Islam, and L. Han, “Novel approach for the synthesis of nanocrystalline anatase titania and their photovoltaic application,” Advances in Opto Electronics, vol. 2012, Article ID 539382, 2012.
[3]  S. H. Joo, S. J. Choi, I. Oh et al., “Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles,” Nature, vol. 412, no. 6843, pp. 169–172, 2001.
[4]  L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. 6861, pp. 353–358, 2001.
[5]  J. Lee, S. Yoon, T. Hyeon, S. M. Oh, and K. B. Kim, “Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors,” Chemical Communications, no. 21, pp. 2177–2178, 1999.
[6]  K. Kaneko and J. Imai, “Adsorption of NO on activated carbon fibers,” Carbon, vol. 27, pp. 954–955, 1989.
[7]  K. Xia, Q. Gao, J. Jiang, and J. Hu, “Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials,” Carbon, vol. 46, no. 13, pp. 1718–1726, 2008.
[8]  A. H. Lu, W. Schmidt, B. Spliethoff, and F. Schüth, “Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume,” Advanced Materials, vol. 15, no. 19, pp. 1602–1606, 2003.
[9]  H. Tamon, H. Ishizaka, T. Araki, and M. Okazaki, “Control of mesoporous structure of organic and carbon aerogels,” Carbon, vol. 36, no. 9, pp. 1257–1262, 1998.
[10]  H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, and H. Yasuda, “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules,” Chemistry of Materials, vol. 8, no. 2, pp. 454–462, 1996.
[11]  B. Rand and H. Marsh, “The process of activation of carbons by gasification with CO2-III. Uniformity of gasification,” Carbon, vol. 9, no. 1, pp. 79–85, 1971.
[12]  J. Ozaki, N. Endo, W. Ohizumi et al., “Novel preparation method for the production of mesoporous carbon fiber from a polymer blend,” Carbon, vol. 35, no. 7, pp. 1031–1033, 1997.
[13]  N. Patel, K. Okabe, and A. Oya, “Designing carbon materials with unique shapes using polymer blending and coating techniques,” Carbon, vol. 40, no. 3, pp. 315–320, 2002.
[14]  R. Ryoo, S. H. Joo, and S. Jun, “Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation,” Journal of Physical Chemistry B, vol. 103, no. 37, pp. 7745–7746, 1999.
[15]  C. Liang, Z. Li, and S. Dai, “Mesoporous carbon materials: synthesis and modification,” Angewandte Chemie—International Edition, vol. 47, no. 20, pp. 3696–3717, 2008.
[16]  J. S. Lee, S. H. Joo, and R. Ryoo, “Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters,” Journal of the American Chemical Society, vol. 124, no. 7, pp. 1156–1157, 2002.
[17]  H. I. Lee, J. H. Kim, D. J. You et al., “Rational synthesis pathway for ordered mesoporous carbon with controllable 30- To 100-angstrom pores,” Advanced Materials, vol. 20, no. 4, pp. 757–762, 2008.
[18]  A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, “Comparison of high surface Pt/C catalysts by cyclic voltammetry,” Journal of Power Sources, vol. 105, no. 1, pp. 13–19, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133