全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Approach for the Synthesis of Nanocrystalline Anatase Titania and Their Photovoltaic Application

DOI: 10.1155/2011/539382

Full-Text   Cite this paper   Add to My Lib

Abstract:

High surface area titania with crystalline anatase walls has been synthesized using ordered large mesoporous carbon as a template. The pore structure of mesoporous carbon is infiltrated with titanium tetraisopropoxide solution at room temperature and the mixture is subjected to heat treatment at in presence of air to complete removal of the template. The prepared crystalline anatase frameworks are characterized by XRD, N2 adsorption and HR-TEM. The nitrogen adsorption-desorption analysis of the prepared anatase titania particles exhibits BET specific surface area of 28?m2/g. The dye-sensitized solar cells performance of this anatase titania material has been tested and energy conversion efficiency of 3.0% is achieved under AM 1.5 sunlight. This work reports a new approach for fabrication of nanocrystalline anatase titania by simple hard templating technique for the first time and their applications for dye-sensitized solar cell. 1. Introduction The use of solar cells for energy production by converting sunlight directly into electricity is an avenue to address global energy demand and clean alternative power generation devices. Most commonly used solar cell technologies include crystalline silicon, thin film concentrators, and thermophotovoltaic solar cells. Silicon-based solar cells are large-scale, single-junction devices, and a very high percentage of photovoltaic production comes from these solar cells [1, 2]. The thin-film solar cells are aimed to decrease the amount of expensive material used in production process without sacrificing efficiency. The materials used in thin-film solar cells are amorphous silicon, CuIn(Ga)Se2 (CIGS) and CdTe/CdS, which are deposited on thin low-cost glass or copper foil substrate [3, 4]. An alternative approach using multijunction solar cells of dye-sensitized solar cells (DSCs) and organic solar cells (OSCs) are also developed to reduce the cost furthermore [5, 6]. In recent years, DSCs have attracted a great deal of attention due to their simple fabrication and low production cost. DSCs are composed of porous nanostructured oxide film with adsorbed dye molecules as a dye-sensitized anode, an electrolyte containing iodide/triiodide redox couple, and a platinized fluorine-doped tin oxide (FTO) glass as counter electrode [7–9]. In DSCs high internal surface area and wide band gap semiconductor material with adsorbed dye as a photoanode plays an important role. The choice of semiconductor depends on its conduction band, density state that allows efficient electronic coupling with the dye energy level to facilitate

References

[1]  D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Applied Physics Letters, vol. 28, no. 11, pp. 671–673, 1976.
[2]  G. Yue, B. Yan, G. Ganguly, J. Yang, S. Guha, and C. Teplin, “Material structure and metastability of hydrogenated nanocrystalline silicon solar cells,” Applied Physics Letters, vol. 88, no. 26, pp. 263507–263507, 2006.
[3]  S. Guha and J. Yang, “Science and technology of amorphous silicon alloy photovoltaics,” IEEE Transactions on Electron Devices, vol. 46, no. 10, pp. 2080–2085, 1999.
[4]  J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Applied Physics Letters, vol. 70, no. 22, pp. 2975–2977, 1997.
[5]  B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[6]  S. M. Zakeeruddin, M. K. Nazeeruddin, and R. H. Baker, “Design, synthesis and application of amphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films,” Langmuir, vol. 18, pp. 952–954, 2002.
[7]  M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature, vol. 414, no. 6861, pp. 332–337, 2001.
[8]  M. Gr?tzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001.
[9]  J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban, “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 108, no. 24, pp. 8106–8118, 2004.
[10]  C. J. Barbé, F. Arendse, P. Comte et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” Journal of the American Ceramic Society, vol. 80, no. 12, pp. 3157–3171, 1997.
[11]  B. Oregan, D. T. Schwartz, S. M. Zakeeruddin, and M. Gratzel, “Microfabrication of ceramics by filling of photoresist molds,” Advanced Materials, vol. 12, pp. 1263–1267, 2000.
[12]  K. Vinodgopal, D. E. Wynkoop, and P. V. Kamat, “Environment photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid organge 7, on TiO2 particles using visible light,” Environmental Science Technology, vol. 30, pp. 1660–1666, 1996.
[13]  K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” Journal of the American Chemical Society, vol. 126, no. 11, pp. 3664–3668, 2004.
[14]  M. Tiemann, “Porous metal oxides as gas sensors,” Chemistry—A European Journal, vol. 13, no. 30, pp. 8376–8388, 2007.
[15]  B. Tian, X. Liu, H. Yang et al., “General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica,” Advanced Materials, vol. 15, no. 16, pp. 1370–1373, 2003.
[16]  H. Yang, Q. Shi, B. Tian et al., “One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4724–4725, 2003.
[17]  P. Srinivasu, S. P. Singh, A. Islam, and L. Han, “Metal-Free counter electrode for efficient dye-sensitized solar cells through high surface area and large porous carbon,” International Journal of Photoenergy, vol. 2011, Article ID 617439, 4 pages, 2011.
[18]  K. P. Gierszal, T.-W. Kim, R. Ryoo, and M. Jaroniec, “Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates,” Journal of Physical Chemistry B, vol. 109, no. 49, pp. 23263–23268, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133