全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optoelectronic Heating for Fabricating Microfluidic Circuitry

DOI: 10.1155/2011/237026

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work reports on optoelectronic-based heaters that can transduce low-power optical images into high-power heating to melt frozen liquids and form desired microfluidic circuitry. The mechanism of optoelectronic heating (OEH) was studied and characterized. OEH relies on photocurrent heating in the illuminated parts of actuating images. Resolution was affected by dark current heating. Photocurrents and dark currents were measured and related to the operating parameters. Successful melting of a frozen media within seconds with 2?mW light patterns and a 4?V operating voltage was demonstrated with feature sizes down to 200?μm × 200?μm. Strategies to increase resolution were addressed. It was shown that the size and location of heating areas can be reliably and rapidly reconfigured by changing the actuating image. 1. Introduction Microelectromechanical system (MEMS) techniques have enabled thermal control at the microscale and thereby opened up the way to new applications. Microheating has been applied to various chemical and biological processes [1, 2], where accurate control of temperature is often essential, with a particular focus on polymerase chain reaction [3]. It has also been popular for microfluidic flow control; thermal pumps [4] and valves [5] offer elegant solutions for device integration. They are based on thermal expansion or phase transition of specific materials. Other thermal phenomena include the control of viscosity for droplet generation [6], temperature gradient focusing of particles [7], and thermocapillary pumping [8]. Local microheating is usually achieved with thin-film resistive heaters that are deposited and patterned using MEMS fabrication techniques. Optical heating is a convenient alternative. Existing optical heating often requires a high-power light source and has been successfully demonstrated in chemical and biological applications [9, 10]. Optothermal valves and pumps have also been implemented in microfluidic platforms [11, 12]. They are typically based on thermal expansion of bubbles or nanocomposite materials in prefabricated areas. Biocompatible thermoreversible gelation polymers offer more flexibility [13]. Those polymers solidify when heated and are biocompatible. They can be mixed with biochemical samples and be used as ubiquitous valves activated upon irradiation [14]. Nonetheless, all those devices are reliant on the optical absorption of liquids, which varies with chemical composition. Photoabsorbing substrates are a convenient alternative. They have been applied to optothermal valves [15] and droplet

References

[1]  E. M. Chan, R. A. Mathies, and A. P. Alivisatos, “Size-controlled growth of CdSe nanocrystals in microfluidic reactors,” Nano Letters, vol. 3, no. 2, pp. 199–201, 2003.
[2]  D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, and B. C. Bunker, “Programmed adsorption and release of proteins in a microfluidic device,” Science, vol. 301, no. 5631, pp. 352–354, 2003.
[3]  M. U. Kopp, A. J. de Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science, vol. 280, no. 5366, pp. 1046–1048, 1998.
[4]  P. Sethu and C. H. Mastrangelo, “Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems,” Sensors and Actuators A, vol. 104, no. 3, pp. 283–289, 2003.
[5]  M. E. Harmon, M. Tang, and C. W. Frank, “A microfluidic actuator based on thermoresponsive hydrogels,” Polymer, vol. 44, no. 16, pp. 4547–4556, 2003.
[6]  N. T. Nguyen, T. H. Ting, Y. F. Yap et al., “Thermally mediated droplet formation in microchannels,” Applied Physics Letters, vol. 91, no. 8, Article ID 084102, 2007.
[7]  D. Ross and L. E. Locascio, “Microfluidic temperature gradient focusing,” Analytical Chemistry, vol. 74, no. 11, pp. 2556–2564, 2002.
[8]  A. A. Darhuber, J. P. Valentino, S. M. Troian, and S. Wagner, “Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays,” Journal of Microelectromechanical Systems, vol. 12, no. 6, pp. 873–879, 2003.
[9]  Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophysical Journal, vol. 68, no. 5, pp. 2137–2144, 1995.
[10]  M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, “Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser,” Analytical Chemistry, vol. 73, no. 16, pp. 4037–4044, 2001.
[11]  S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Advanced Materials, vol. 17, no. 11, pp. 1366–1368, 2005.
[12]  K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab on a Chip, vol. 11, no. 7, pp. 1389–1395, 2011.
[13]  H. Yoshioka, M. Mikami, Y. Mori, and E. Tsuchida, “Synthetic hydrogel with thermoreversible gelation. I. preparation and rheological properties,” Journal of Macromolecular Science—Pure and Applied Chemistry, vol. A31, no. 1, pp. 113–120, 1994.
[14]  H. Sugino, T. Arakawa, Y. Nara et al., “Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol-gel transition of thermoreversible gelation polymer,” Lab on a Chip, vol. 10, no. 19, pp. 2559–2565, 2010.
[15]  M. Krishnan, J. Park, and D. Erickson, “Optothermorheological flow manipulation,” Optics Letters, vol. 34, no. 13, pp. 1976–1978, 2009.
[16]  A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, no. 7, Article ID 074103, 2007.
[17]  P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005.
[18]  P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A, vol. 104, no. 3, pp. 222–228, 2003.
[19]  G. Haulot, A. J. Benahmed, and C. M. Ho, “Optoelectronic reconfigurable microchannels,” in Proceedings of the 24th International Conference on Micro Electro Mechanical Systems (MEMS '11), pp. 53–56, January 2011.
[20]  N. Attaf, M. S. Aida, and L. Hadjeris, “Thermal conductivity of hydrogenated amorphous silicon,” Solid State Communications, vol. 120, no. 12, pp. 525–530, 2001.
[21]  H. J. Goldsmid, M. M. Kaila, and G. L. Paul, “Thermal conductivity of amorphous silicon,” Physica Status Solidi A, vol. 76, no. 1, pp. K31–K33, 1983.
[22]  C. R. Wronski, D. E. Carlson, and R. E. Daniel, “Schottky-barrier characteristics of metal-amorphous-silicon diodes,” Applied Physics Letters, vol. 29, no. 9, pp. 602–605, 1976.
[23]  D. E. Heller, R. M. Dawson, C. T. Malone, S. Nag, and C. R. Wronski, “Electron-transport mechanisms in metal Schottky barrier contacts to hydrogenated amorphous silicon,” Journal of Applied Physics, vol. 72, no. 6, pp. 2377–2384, 1992.
[24]  N. Szydlo, J. Magari?o, and D. Kaplan, “Post-hydrogenated chemical vapor deposited amorphous silicon Schottky diodes,” Journal of Applied Physics, vol. 53, no. 7, pp. 5044–5051, 1982.
[25]  S. M. Sze, Physics of Semiconductor Devices, Wiley, 3rd edition, 2007.
[26]  T. Aoki, N. Ohrui, C. Fujihashi, and K. Shimakawa, “Enhancement of non-geminate electron-hole pair recombination induced by strong electric field in hydrogenated amorphous silicon (a-Si:H): effective-temperature concept,” Philosophical Magazine Letters, vol. 88, no. 1, pp. 9–17, 2008.
[27]  K. Jahn, R. Carius, and W. Fuhs, “Photoluminescence and photoconductivity of a-Si:H at high electric fields,” Journal of Non-Crystalline Solids, vol. 97-98, no. 1, pp. 575–578, 1987.
[28]  W. Paul and D. A. Anderson, “Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering,” Solar Energy Materials, vol. 5, no. 3, pp. 229–316, 1981.
[29]  J. A. Schmidt, R. R. Koropecki, R. D. Arce, F. A. Rubinelli, and R. H. Buitrago, “Energy-resolved photon flux dependence of the steady state photoconductivity in hydrogenated amorphous silicon: implications for the constant photocurrent method,” Thin Solid Films, vol. 376, no. 1-2, pp. 267–274, 2000.
[30]  A. Madan, W. Czubatyj, J. Yang, M. S. Shur, and M. P. Shaw, “Observation of two modes of current transport through phosphorus-doped amorphous hydrogenated silicon Schottky barriers,” Applied Physics Letters, vol. 40, no. 3, pp. 234–236, 1982.
[31]  T. Shimizu, “Staebler-Wronski effect in hydrogenated amorphous silicon and related alloy films,” Japanese Journal of Applied Physics Part 1, vol. 43, no. 6 A, pp. 3257–3268, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133