全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

The Cationic Cytokine IL-26 Differentially Modulates Virus Infection in Culture

DOI: 10.1371/journal.pone.0070281

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interleukin-26 (IL-26) belongs to the IL-10 cytokine family, is produced by activated T cells, and targets epithelial target cells for signal transduction. Here, we describe the IL-26 effects on the infection of culture cells with recombinant vesicular stomatitis virus (VSV), human cytomegalovirus (HCMV), and herpes simplex virus type 1 (HSV-1) expressing green fluorescent protein. After pre-incubation with recombinant IL-26 and at low multiplicity of infection, VSV showed strongly enhanced infection and replication rates as measured for infectivity, for transcript levels, and for protein expression. Control proteins did not affect VSV infection. The IL-26 effect was independent of the IL-26 receptor and neutralized by anti-IL-26 serum. Pre-incubation of VSV was much more efficient than pre-incubation of the target cells to enhance virus infection. IL-26 increased virus adsorption to target cells as shown by quantitative reverse-transcription PCR. In contrast, the infection of IL-26-treated human fibroblasts with HCMV was inhibited and the infection by HSV-1 was not altered by IL-26. Thus, IL-26 differentially modulates the infection by different enveloped viruses.

References

[1]  Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H (2004) The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol 76: 314-321. doi:10.1189/jlb.0204117. PubMed: 15123776.
[2]  Fickenscher H, H?r S, Küpers H, Knappe A, Wittmann S et al. (2002) The interleukin-10 family of cytokines. Trends Immunol 23: 89-96. doi:10.1016/S1471-4906(01)02149-4. PubMed: 11929132.
[3]  Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y et al. (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22: 929-979. doi:10.1146/annurev.immunol.22.012703.104622. PubMed: 15032600.
[4]  Renauld JC (2003) Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 3: 667-676. doi:10.1038/nri1153. PubMed: 12974481.
[5]  Braum O, Pirzer H, Fickenscher H (2006) Interleukin-26, an epitheliotropic T-cell cytokine. Antiinflamm Antiallergy Agents Med Chem 5: 275-277.
[6]  Braum O, Pirzer H, Fickenscher H (2007) Interleukin-26, a T-cellular activator of epithelial cells. In: A. Zdanov. Class II Cytokines 2007. Trivandrum: Transworld Research Network. pp. 193-200.
[7]  Braum O, Pirzer H, Fickenscher H (2012) Interleukin-26, a highly cationic T-cell cytokine targeting epithelial cells. Antiinflamm Antiallergy Agents Med Chem 11: 221-229. PubMed: 23106140.
[8]  Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young HA et al. (2010) Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 21: 393-401. doi:10.1016/j.cytogfr.2010.09.001. PubMed: 20947410.
[9]  Fickenscher H, Pirzer H (2004) Interleukin-26. Int Immunopharmacol 4: 609-613. doi:10.1016/j.intimp.2004.01.004. PubMed: 15120646.
[10]  Knappe A, H?r S, Wittmann S, Fickenscher H (2000) Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus Saimiri. J Virol 74: 3881-3887. doi:10.1128/JVI.74.8.3881-3887.2000. PubMed: 10729163.
[11]  Collins PL, Henderson MA, Aune TM (2012) Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element. Genes Immun 13: 481-488. doi:10.1038/gene.2012.22. PubMed: 22622197.
[12]  Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1: 488-494. doi:10.1038/sj.gene.6363716. PubMed: 11197690.
[13]  Nagalakshmi ML, Murphy E, McClanahan T, de Waal Malefyt R (2004) Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol 4: 577-592. doi:10.1016/j.intimp.2004.01.007. PubMed: 15120644.
[14]  Wolk K, Kunz S, Asadullah K, Sabat R (2002) Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168: 5397-5402. PubMed: 12023331.
[15]  H?r S, Pirzer H, Dumoutier L, Bauer F, Wittmann S et al. (2004) The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J Biol Chem 279: 33343-33351. doi:10.1074/jbc.M405000200. PubMed: 15178681.
[16]  Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S et al. (2012) IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLOS Biol 10: e1001395. PubMed: 23055831.
[17]  Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM et al. (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950-957. doi:10.1038/nrg2199. PubMed: 17676044.
[18]  Esendagli G, Kurne AT, Sayat G, Kilic AK, Guc D et al. (2013) Evaluation of Th17-related cytokines and receptors in multiple sclerosis patients under interferon β-1 therapy. J Neuroimmunol 255: 81-84. doi:10.1016/j.jneuroim.2012.10.009. PubMed: 23177721.
[19]  Cella M, Fuchs A, Vermi W, Facchetti F, Otero K et al. (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457: 722-725. doi:10.1038/nature07537. PubMed: 18978771.
[20]  Hughes T, Becknell B, McClory S, Briercheck E, Freud AG et al. (2009) Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22. Blood 113: 4008-4010. doi:10.1182/blood-2008-12-192443. PubMed: 19244159.
[21]  Chang C, Magracheva E, Kozlov S, Fong S, Tobin G et al. (2003) Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J Biol Chem 278: 3308-3313. doi:10.1074/jbc.M208602200. PubMed: 12403790.
[22]  Nagem RA, Colau D, Dumoutier L, Renauld JC, Ogata C et al. (2002) Crystal structure of recombinant human interleukin-22. Structure 10: 1051-1062. doi:10.1016/S0969-2126(02)00797-9. PubMed: 12176383.
[23]  Trivella DB, Ferreira-Júnior JR, Dumoutier L, Renauld JC, Polikarpov I (2010) Structure and function of interleukin-22 and other members of the interleukin-10 family. Cell Mol Life Sci 67: 2909-2935. doi:10.1007/s00018-010-0380-0. PubMed: 20454917.
[24]  Xu T, Logsdon NJ, Walter MR (2005) Structure of insect-cell-derived IL-22. Acta Crystallogr D Biol Crystallogr 61: 942-950. doi:10.1107/S1744309105029222. PubMed: 15983417.
[25]  Zdanov A, Schalk-Hihi C, Gustchina A, Tsang M, Weatherbee J et al. (1995) Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 3: 591-601. doi:10.1016/S0969-2126(01)00193-9. PubMed: 8590020.
[26]  Zdanov A, Schalk-Hihi C, Wlodawer A (1996) Crystal structure of human interleukin-10 at 1.6 A resolution and a model of a complex with its soluble receptor. Protein Sci 5: 1955-1962. doi:10.1002/pro.5560051001. PubMed: 8897595.
[27]  Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC (2001) Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167: 3545-3529. PubMed: 11564763.
[28]  Parrish-Novak J, Xu W, Brender T, Yao L, Jones C (2002) Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277: 47517-47523. doi:10.1074/jbc.M205114200. PubMed: 12351624.
[29]  Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV et al. (2004) Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 172: 2006-2010. PubMed: 14764663.
[30]  Yoon SI, Logsdon NJ, Sheikh F, Donnelly RP, Walter MR (2006) Conformational changes mediate interleukin-10 receptor 2 (IL-10R2) binding to IL-10 and assembly of the signaling complex. J Biol Chem 281: 35088-35096. doi:10.1074/jbc.M606791200. PubMed: 16982608.
[31]  Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T et al. (2001) Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104: 9-19. doi:10.1016/S0092-8674(01)00187-8. PubMed: 11163236.
[32]  Sa SM, Valdez PA, Wu J, Jung K, Zhong F et al. (2007) The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 178: 2229-2240. PubMed: 17277128.
[33]  Wolk K, Witte K, Witte E, Proesch S, Schulze-Tanzil G et al. (2008) Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes. J Leukoc Biol 83: 1181-1193. doi:10.1189/jlb.0807525. PubMed: 18281438.
[34]  Dambacher J, Beigel F, Zitzmann K, De Toni EN, G?ke B et al. (2009) The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut 58: 1207-1217. doi:10.1136/gut.2007.130112. PubMed: 18483078.
[35]  Goris A, Heggarty S, Marrosu MG, Graham C, Billiau A et al. (2002) Linkage disequilibrium analysis of chromosome 12q14-15 in multiple sclerosis: delineation of a 118-kb interval around interferon-gamma (IFNG) that is involved in male versus female differential susceptibility. Genes Immun 3: 470-476. doi:10.1038/sj.gene.6363913. PubMed: 12486605.
[36]  Goris A, Marrosu MG, Vandenbroeck K (2001) Novel polymorphisms in the IL-10 related AK155 gene (chromosome 12q15). Genes Immun 2: 284-286. doi:10.1038/sj.gene.6363772. PubMed: 11528524.
[37]  Vandenbroeck K, Cunningham S, Goris A, Alloza I, Heggarty S et al. (2003) Polymorphisms in the interferon-gamma/interleukin-26 gene region contribute to sex bias in susceptibility to rheumatoid arthritis. Arthritis Rheum 48: 2773-2778. doi:10.1002/art.11236. PubMed: 14558082.
[38]  Silverberg MS, Cho JH, Rioux JD, McGovern DP, Wu J et al. (2009) Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet 41: 216-220. doi:10.1038/ng.275. PubMed: 19122664.
[39]  Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9: 641-649. doi:10.1038/ni.1610. PubMed: 18454151.
[40]  Sedwick C (2012) IL-26 kick-starts rheumatoid arthritis. PLOS Biol 10: e1001398. PubMed: 23049483.
[41]  Dumoutier L, Lejeune D, H?r S, Fickenscher H, Renauld JC (2003) Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT) 1. Stat 2 and STAT3. Biochem J 370: 391-396.
[42]  Kotenko SV (2011) IFN-λs. Curr Opin Immunol 23: 583-590. doi:10.1016/j.coi.2011.07.007. PubMed: 21840693.
[43]  Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M et al. (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4: 69-77. doi:10.1038/nrm1003. PubMed: 12483210.
[44]  Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S et al. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4: 63-68. doi:10.1038/ni873. PubMed: 12469119.
[45]  Witte K, Witte E, Sabat R, Wolk K (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21: 237-251. doi:10.1016/j.cytogfr.2010.04.002. PubMed: 20655797.
[46]  Doyle SE, Schreckhise H, Khuu-Duong K, Henderson K, Rosler R et al. (2006) Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44: 896-906. doi:10.1002/hep.21312. PubMed: 17006906.
[47]  Boritz E, Gerlach J, Johnson JE, Rose JK (1999) Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway. J Virol 73: 6937-6945. PubMed: 10400792.
[48]  Dalton KP, Rose JK (2001) Vesicular stomatitis virus glycoprotein containing the entire green fluorescent protein on its cytoplasmic domain is incorporated efficiently into virus particles. Virology 279: 414-421. doi:10.1006/viro.2000.0736. PubMed: 11162797.
[49]  Marschall M, Freitag M, Weiler S, Sorg G, Stamminger T (2000) Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob Agents Chemother 44: 1588-1597. doi:10.1128/AAC.44.6.1588-1597.2000. PubMed: 10817714.
[50]  Arthur JL, Scarpini CG, Connor V, Lachmann RH, Tolkovsky AM (2001) Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J Virol 75: 3885-3895. doi:10.1128/JVI.75.8.3885-3895.2001. PubMed: 11264377.
[51]  Friedrich M, Holzmann R, Sterry W, Wolk K, Truppel A et al. (2003) Ultraviolet B radiation-mediated inhibition of interferon-gamma-induced keratinocyte activation is independent of interleukin-10 and other soluble mediators but associated with enhanced intracellular suppressors of cytokine-signaling expression. J Invest Dermatol 121: 845-852. doi:10.1046/j.1523-1747.2003.12482.x. PubMed: 14632204.
[52]  Janssens N, Janicot M, Perera T, Bakker A (2004) Housekeeping genes as internal standards in cancer research. Mol Diagn 8: 107-113. doi:10.2165/00066982-200408020-00005. PubMed: 15527325.
[53]  Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H et al. (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6: 821-825. doi:10.1038/77558. PubMed: 10888934.
[54]  Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST et al. (2005) IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am J Physiol Gastrointest Liver Physiol 289: G960-G968. doi:10.1152/ajpgi.00126.2005. PubMed: 16051921.
[55]  Dambacher J, Beigel F, Zitzmann K, Heeg MH, G?ke B et al. (2008) The role of interleukin-22 in hepatitis C virus infection. Cytokine 41: 209-216. doi:10.1016/j.cyto.2007.11.016. PubMed: 18191408.
[56]  Lallemand C, Blanchard B, Palmieri M, Lebon P, May E et al. (2007) Single-stranded RNA viruses inactivate the transcriptional activity of p53 but induce NOXA-dependent apoptosis via post-translational modifications of IRF-1, IRF-3 and CREB. Oncogene 26: 328-338. doi:10.1038/sj.onc.1209795. PubMed: 16832344.
[57]  Hummelshoj L, Ryder LP, Poulsen LK (2006) The role of the interleukin-10 subfamily members in immunoglobulin production by human B cells. Scand J Immunol 64: 40-47. doi:10.1111/j.1365-3083.2006.01773.x. PubMed: 16784489.
[58]  Bailey CA, Miller DK, Lenard J (1984) Effects of DEAE-dextran on infection and hemolysis by VSV. Evidence that nonspecific electrostatic interactions mediate effective binding of VSV to cells. Virology 133: 111-118. doi:10.1016/0042-6822(84)90429-X. PubMed: 6199890.
[59]  Carneiro FA, Bianconi ML, Weissmüller G, Stauffer F, Da Poian AT (2002) Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol 76: 3756-3764. doi:10.1128/JVI.76.8.3756-3764.2002. PubMed: 11907215.
[60]  Davis HE, Morgan JR, Yarmush ML (2002) Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 97: 159-172. doi:10.1016/S0301-4622(02)00057-1. PubMed: 12050007.
[61]  Davis HE, Rosinski M, Morgan JR, Yarmush ML (2004) Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 86: 1234-1242. doi:10.1016/S0006-3495(04)74197-1. PubMed: 14747357.
[62]  Münch J, Rücker E, St?ndker L, Adermann K, Goffinet C et al. (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131: 1059-1071. doi:10.1016/j.cell.2007.10.014. PubMed: 18083097.
[63]  Roan NR, Münch J, Arhel N, Mothes W, Neidleman J et al. (2009) The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol 83: 73-80. doi:10.1128/JVI.01366-08. PubMed: 18945786.
[64]  Crack LR, Jones L, Malavige GN, Patel V, Ogg GS (2012) Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 37: 534-543. doi:10.1111/j.1365-2230.2012.04305.x. PubMed: 22639919.
[65]  Hazrati E, Galen B, Lu W, Wang W, Ouyang Y et al. (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 177: 8658-8666. PubMed: 17142766.
[66]  Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A (2009) Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 83: 440-453. doi:10.1128/JVI.01864-08. PubMed: 18971266.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133