全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

A Giant Chelonioid Turtle from the Late Cretaceous of Morocco with a Suction Feeding Apparatus Unique among Tetrapods

DOI: 10.1371/journal.pone.0063586

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250–65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. Principal Findings A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. Conclusion/Significance The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further supports the hypothesis that marine life was, at least locally, very diversified just prior to the Cretaceous/Palaeogene (K/Pg) biotic crisis.

References

[1]  Lucas J, Prév?t-Lucas L (1996) Tethyan phosphates and bioproductites. In: Nairn AEM et al.., editors. Volume 8: The Tethys Ocean - The Ocean basins and Margins. New York: Plenum Press. 367–391.
[2]  Arambourg C (1952) Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie). Notes Mém Serv Géol Maroc 92: 1–372.
[3]  Bardet N, Pereda Suberbiola X, Jouve S, Bourdon E, Vincent P, et al. (2010) Reptilian assemblages from the latest Cretaceous - Palaeogene phosphates of Morocco: from Arambourg to present time. Hist Biol 22: 186–199.
[4]  Gaffney ES, Tong H, Meylan PS (2006) Evolution of the side-necked turtles: the families Bothremydidae, Euraxemydidae, and Araripemydidae. Bull Am Mus Nat Hist 300: 1–700.
[5]  Tong H, Hirayama R (2008) A new species of Argillochelys (Testudines: Cryptodira: Cheloniidae) from the Ouled Abdoun phosphate Basin, Morocco. Bull Soc Géol France 179: 623–630.
[6]  Gmira S (1995) Etude des Chéloniens fossiles du Maroc. Anatomie, systématique, phylogénie. Paris: Cahiers de paleontology. 140 p.
[7]  Tong H, Hirayama R (2004) First Cretaceous dermochelyid turtle from Africa. Rev Paléobiologie 9: 55–59.
[8]  Lapparent de Broin F de (2000) African chelonians from the Jurassic to the Present. A preliminary catalog of the African fossil chelonians. Paleontol Afr 36: 43–82.
[9]  Hirayama R (1997) Distribution and diversity of Cretaceous chelonioids. In: Callaway JM, Nicholls EL, editors. Ancient Marine Reptiles. San Diego: Academic Press. 225–241.
[10]  De La Fuente M, Fernández MS (2011) An unusual pattern of limb morphology in the Tithonian marine turtle Neusticemys neuquina from the Vaca Muerta Formation, Neuquén Basin, Argentina. Lethaia 44(1): 15–25.
[11]  Lapparent de Broin F de (2001) The European turtle fauna from the Triassic to the Present. Dumerilia 4(3): 155–216.
[12]  Parham JF, Pyenson ND (2010) New Sea Turtle from the Miocene of Peru and the Iterative Evolution of Feeding Ecomorphologies since the Cretaceous. Jour Pal 84(2): 231–247.
[13]  Mateus O, Jacobs L, Polcyn M, Schulp A, Vineyyard D, et al. (2009) The oldest African eucryptodiran turtle, Angolachelys ombeu, from the Cretaceous of Angola. Acta Pal Pol 54(4): 581–588.
[14]  Hirayama R (1998) Oldest known sea turtle. Nature 392 (6677): 705–708.
[15]  Kear P, Lee MSY (2006) A primitive protostegid from Australia and early sea turtle evolution. Biol Let 2: 116–119.
[16]  Jalil NE, Lapparent de Broin F de, Bardet N, Vacant R, Bouya B, et al. (2009) Euclastes acutirostris, a new species of marine turtle (Cryptodira, Cheloniidae) from the Palaeocene phosphates of Morocco (Oulad Abdoun Basin, Danian-Thanetian). C R Palevol 8(5): 447–459.
[17]  Bour R, Dubois A (1986) Nomenclature ordinale et familiale des Tortues (Reptilia). Note complémentaire. Bull mens Soc Lin Lyon 55(3): 87–90.
[18]  Ernst CH, Barbour RW (1989) Turtles of the World. Washington, DC: Smithsonian Institution Press.
[19]  Gaffney ES (1979) Comparative cranial morphology of recent and fossil turtles. Bull Am Mus Nat Hist 164: 65–376.
[20]  Benton MJ (2010) studying function and behavior in the fossil record. Plos Biology 8(3): e1000321 doi:10.1371/journal.pbio.1000321.
[21]  Sanderson SL, Wassersug R (1993) Convergent and alternative designs for vertebrate suspension feeding. In: Hanken G, Hall BK, editors. The skull, Vol 3 Functional and Evolutionary Mechanusms. Chicago, IL: University of Chicago Press.
[22]  Bergert BA, Wainwright PC (1997) Morphology and kinematics of prey capture in the syngnathid fishes Hippocampus erectus and Syngnathus floridae. Marine Biol 127: 563–570.
[23]  Lussanet MHE de, Muller M (2007) The smaller your mouth, the longer your snout: predicting the snout length of Syngnathus acus, Centriscus scutatus and other pipette feeders. J R Soc Interface 4: 561–573.
[24]  Heyning JE, Mead JG (1996) Suction feeding in beaked whales: morphological and observationnal evidence. Contr Science 464: 1–12.
[25]  Werth AJ (2006a) Odontocete suction feeding: experimental analysis of water flow and head shape. J Morphol 267: 1415–1428.
[26]  Van Wassenbergh S, Roos G, Ferry L (2011) An adaptive explanation for the horse-like shape of seahorses. Nat Commun 2: 164, 10.1038/ncomms1168.
[27]  Werth AJ (2000) Feeding in Marine Mammals. In: Schwenk K, editor. Feeding: Form, Function, and Evolution in Tetrapod Vertebrates. San Diego: Academic Press, 487–526.
[28]  Lambert O, Bianucci G, Post K, de Muizon C, Salas-Gismondi R, et al. (2010) The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466: 105–108.
[29]  Lauder GV (1985) Aquatic feeding in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, editors. Functional Vertebrate Morphology. Cambridge, MA: Harvard University Press, 210–229.
[30]  Lauder GV, Prendergast T (1992) Kinematics of aquatic prey capture in the snapping turtle Chelydra serpentina.. J Exp Biol 164: 55–78.
[31]  Summers AP, Darouian KF, Richmond AM, Brainerd EL (1998) Kinematics of aquatic and terrestrial prey capture in Terrapene carolina, with implications for the evolution of feeding in cryptodire Turtles. J Exp Zool 281: 280–287.
[32]  Lemell P, Lemmell C, Snelderwaard P, Gumpenberger M, Wochesl?nder R, et al. (2002) Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae). J Exp Biol 205: 1495–1506.
[33]  Lemell P, Beisser CJ, Gumpenberger M, Snelderwaard P, Gemel R, et al. (2010) The feeding apparatus of Chelus fimbriatus (Pleurodira: Chelidae) – adaptation perfected? Amphibia-Reptilia 31: 97–107.
[34]  Werth AJ (2006b) Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J Mammal 87: 579–588.
[35]  Schumacher GH (1973) The head muscles and hyolaryngeal skeleton of turtles and crocodilians. In: Gans C, Parsons TS, editors. Biology of Reptilia, Vol. 4. New York: Academic Press.
[36]  Gervais P (1872) Ostéologie de Sphargis luth. Nouv Arch Muséum Mém 8: 199–228.
[37]  Reidenberg JS, Laitman JT (1994) Anatomy of the hyoid apparatus in Odontoceti (toothed whales): specializations of their skeleton and musculature compared with those of terrestrial mammals. Anat Rec 240: 598–624.
[38]  Van Damme J, Aerts P (1997) Kinematics and Functional Morphology of Aquatic Feeding in Australian Snake-Necked Turtles (Pleurodira; Chelodina). J Morphol 233: 113–125.
[39]  Winokur RM (1988) The buccopharyngeal mucosa of the turtles (Testudines). J Morphol 196: 33–52.
[40]  Massare JA (1987) Tooth morphology and prey preference of Mesozoic marine reptiles. J Vert Pal 7: 121–137.
[41]  Massare JA (1988) Swimming capabilities of Mesozoic marine reptiles: implications for method of predation. Paleobiology 14: 187–205.
[42]  Ciampaglio CN, Wray GA, Corliss BH (2005) A toothy tale of evolution: convergence in tooth morphology among Mesozoic–Cenozoic sharks, reptiles and mammals. Sedimentary Rec 3(4): 4–8.
[43]  Carroll RL, Dong ZM (1991) Hupehsuchus, an enigmatic aquatic reptile from the Triassic of China, and the problem of establishing relationships. Phil Trans Royal Soc London B 28(331): 131–153.
[44]  Collin R, Janis CM (1997) Morphological Constraints on Tetrapod Feeding Mechanisms: Why Were There No Suspension-Feeding Marine Reptiles? In Callaway JM, Nicholls EL, editors. Ancient Marine Reptiles. San Diego: Academic Press, 451–466.
[45]  Nicholls E, Manabe M (2004) Giant species of the Triassic – a new species of Shonisaurus from the Pardonet Formation (Norian: Late Triassic) of British Columbia. J Vert Pal 24: 838–849.
[46]  Sander PM, Chen X, Cheng L, Wang X (2011) Short-snouted toothless ichthyosaur from China suggests Late Triassic diversification of suction feeding. Plos One 6(5): 1–10.
[47]  Jouve S, Bardet N, Jalil NE, Pereda Suberbiola X, Bouya B, et al. (2008) The oldest African crocodylian: phylogeny, palaeobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary. J Vert Pal 28: 409–421.
[48]  Vincent P, Bardet N, Pereda Suberbiola X, Bouya B, Amaghzaz M, et al. (2011) Zarafasaura oceanis, a new elasmosaurid (Reptilian: Sauropterygia) from the Maastrichtian Phosphates of Morocco and the palaeobiogeography of latest Cretaceous plesiosaurs. Gond Res 19: 1062–1073.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133