全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrodes for Microfluidic Integrated Optoelectronic Tweezers

DOI: 10.1155/2011/375451

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on two types of electrodes that enable the integration of optoelectronic tweezers (OETs) with multilayer poly(dimethylsilane)- (PDMS-) based microfluidic devices. Both types of electrodes, Au-mesh and single-walled carbon nanotube- (SWNT-) embedded PDMS thin film, are optically transparent, electrically conductive, and can be mechanically deformed and provide interfaces to form strong covalent bonding between an OET device and PDMS through standard oxygen plasma treatment. Au-mesh electrodes provide high electrical conductivity and high transparency but are lack of flexibility and allow only small deformation. On the other hand, SWNT-embedded PDMS thin film electrodes provide not only electrical conductivity but also optical transparency and can undergo large mechanical deformation repeatedly without failure. This enables, for the first time, microfluidic integrated OET with on-chip valve and pump functions, which is a critical step for OET-based platforms to conduct more complex and multistep biological and biochemical analyses. 1. Introduction Optoelectronic tweezers (OETs) demonstrated by Chiou et al. in 2005 have promised a platform for high-throughput single cell manipulation and analysis [1, 2]. The principle of manipulating microscale objects and cells on an OET platform is based on light-patterned virtual electrodes and the induced dielectrophoretic (DEP) forces [1]. Types of objects that have been manipulated using OET are versatile, including polystyrene beads [1, 2], semiconductor microdisks [3], nanowires [4], DNA molecules [5], proteins [6], sperm [7], and bacteria and mammalian cells [1, 2, 8–10]. Recent development of OET technologies also broadened the type of media in which OET can operate. Phototransistor OET enabled OET to function in regular physiological buffers with high electrical conductivity (1.5?S/m) [11]. Floating electrode OET enabled the manipulation of aqueous droplets in electrically insulating media such as oils and air [12, 13]. OET can also be integrated with digital microfluidic platform for manipulating objects carried in droplets [13, 14]. A universal platform successfully integrating OET and optoelectrowetting (OEW) further allows optical manipulation of objects and droplets on the same featureless OET device [15]. Integration of OET with continuous phase microfluidic devices has also been realized [16, 17]. However, the integration is currently limited to simple microfluidic channels without other functional components such as valves and pumps due to the rigid and brittle property of ITO electrodes. This

References

[1]  P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005.
[2]  A. T. Ohta, P. Y. Chiou, T. H. Han et al., “Dynamic cell and microparticle control via optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 491–499, 2007.
[3]  M. C. Tien, A. T. Ohta, K. Yu, S. L. Neale, and M. C. Wu, “Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly,” Applied Physics A, vol. 95, no. 4, pp. 967–972, 2009.
[4]  A. Jamshidi, P. J. Pauzauskie, P. J. Schuck et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008.
[5]  P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, no. 3, pp. 525–531, 2008.
[6]  H. Hwang and J. K. Park, “Measurement of molecular diffusion based on optoelectrofluidic fluorescence microscopy,” Analytical Chemistry, vol. 81, no. 21, pp. 9163–9167, 2009.
[7]  A. T. Ohta, M. Garcia, J. K. Valley et al., “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab on a Chip, vol. 10, no. 23, pp. 3213–3217, 2010.
[8]  A. T. Ohta, P. Y. Chiou, H. L. Phan et al., “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 2, pp. 235–242, 2007.
[9]  J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab on a Chip, vol. 9, no. 12, pp. 1714–1720, 2009.
[10]  W. Choi, S. W. Nam, H. Hwang, S. Park, and J. K. Park, “Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image,” Applied Physics Letters, vol. 93, no. 14, Article ID 143901, 2008.
[11]  H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, no. 2, pp. 165–172, 2010.
[12]  S. Park, C. Pan, T. H. Wu et al., “Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium,” Applied Physics Letters, vol. 92, no. 15, Article ID 151101, 2008.
[13]  S. Y. Park, S. Kalim, C. Callahan, M. A. Teitell, and E. P. Y. Chiou, “A light-induced dielectrophoretic droplet manipulation platform,” Lab on a Chip, vol. 9, no. 22, pp. 3228–3235, 2009.
[14]  G. J. Shah, A. T. Ohta, E. P. Y. Chiou, M. C. Wu, and C. J. C. J. Kim, “EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis,” Lab on a Chip, vol. 9, no. 12, pp. 1732–1739, 2009.
[15]  J. K. Valley, S. Ningpei, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “A unified platform for optoelectrowetting and optoelectronic tweezers,” Lab on a Chip, vol. 11, no. 7, pp. 1292–1297, 2011.
[16]  Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, no. 4, pp. 572–578, 2008.
[17]  D. H. Lee, H. Hwang, and J. K. Park, “Generation and manipulation of droplets in an optoelectrofluidic device integrated with microfluidic channels,” Applied Physics Letters, vol. 95, no. 16, Article ID 164102, 2009.
[18]  G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp. 368–373, 2006.
[19]  J. C. McDonald, D. C. Duffy, J. R. Anderson et al., “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, vol. 21, no. 1, pp. 27–40, 2000.
[20]  M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, no. 5463, pp. 113–116, 2000.
[21]  T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science, vol. 298, no. 5593, pp. 580–584, 2002.
[22]  D. J. Laser and J. G. Santiago, “A review of micropumps,” Journal of Micromechanics and Microengineering, vol. 14, no. 6, pp. R35–R64, 2004.
[23]  N. T. Nguyen and Z. Wu, “Micromixers—a review,” Journal of Micromechanics and Microengineering, vol. 15, no. 2, pp. R1–R16, 2005.
[24]  J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nature Biotechnology, vol. 21, no. 10, pp. 1179–1183, 2003.
[25]  Q. Cao and J. A. Rogers, “Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects,” Advanced Materials, vol. 21, no. 1, pp. 29–53, 2009.
[26]  L. Hu, D. S. Hecht, and G. Grüner, “Carbon nanotube thin films: fabrication, properties, and applications,” Chemical Reviews, vol. 110, no. 10, pp. 5790–5844, 2010.
[27]  M. W. Rowell, M. A. Topinka, M. D. McGehee et al., “Organic solar cells with carbon nanotube network electrodes,” Applied Physics Letters, vol. 88, no. 23, Article ID 233506, 2006.
[28]  Q. Cao, S. H. Hur, Z. T. Zhu et al., “Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics,” Advanced Materials, vol. 18, no. 3, pp. 304–309, 2006.
[29]  D. Zhang, K. Ryu, X. Liu et al., “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Letters, vol. 6, no. 9, pp. 1880–1886, 2006.
[30]  L. Hu, G. Gruner, J. Gong, C. J. Kim, and B. Hornbostel, “Electrowetting devices with transparent single-walled carbon nanotube electrodes,” Applied Physics Letters, vol. 90, no. 9, Article ID 093124, 2007.
[31]  L. Hu, D. S. Hecht, and G. Grüner, “A method of fabricating highly transparent and conductive interpenetrated carbon nanotube-parylene networks,” Nanotechnology, vol. 20, no. 46, Article ID 465304, 5 pages, 2009.
[32]  E. Lahiff, C. Y. Ryu, S. Curran, A. I. Minett, W. J. Blau, and P. M. Ajayan, “Selective positioning and density control of nanotubes within a polymer thin film,” Nano Letters, vol. 3, no. 10, pp. 1333–1337, 2003.
[33]  K. Lee, S. S. Lee, J. A. Lee, K. C. Lee, and S. Ji, “Carbon nanotube film piezoresistors embedded in polymer membranes,” Applied Physics Letters, vol. 96, no. 1, Article ID 013511, 2010.
[34]  H. Cao, Z. Gan, Q. Lv et al., “Single-walled carbon nanotube network/poly composite thin film for flow sensor,” Microsystem Technologies, vol. 16, no. 6, pp. 955–959, 2010.
[35]  Z. Wu, Z. Chen, X. Du et al., “Transparent, conductive carbon nanotube films,” Science, vol. 305, no. 5688, pp. 1273–1276, 2004.
[36]  Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films,” Applied Physics Letters, vol. 88, no. 12, Article ID 123109, 3 pages, 2006.
[37]  M. Zhang, J. Wu, L. Wang, K. Xiao, and W. Wen, “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips,” Lab on a Chip, vol. 10, no. 9, pp. 1199–1203, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133