全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

NanoMiner — Integrative Human Transcriptomics Data Resource for Nanoparticle Research

DOI: 10.1371/journal.pone.0068414

Full-Text   Cite this paper   Add to My Lib

Abstract:

The potential impact of nanoparticles on the environment and on human health has attracted considerable interest worldwide. The amount of transcriptomics data, in which tissues and cell lines are exposed to nanoparticles, increases year by year. In addition to the importance of the original findings, this data can have value in broader context when combined with other previously acquired and published results. In order to facilitate the efficient usage of the data, we have developed the NanoMiner web resource (http://nanominer.cs.tut.fi/), which contains 404 human transcriptome samples exposed to various types of nanoparticles. All the samples in NanoMiner have been annotated, preprocessed and normalized using standard methods that ensure the quality of the data analyses and enable the users to utilize the database systematically across the different experimental setups and platforms. With NanoMiner it is possible to 1) search and plot the expression profiles of one or several genes of interest, 2) cluster the samples within the datasets, 3) find differentially expressed genes in various nanoparticle studies, 4) detect the nanoparticles causing differential expression of selected genes, 5) analyze enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms for the detected genes and 6) search the expression values and differential expressions of the genes belonging to a specific KEGG pathway or Gene Ontology. In sum, NanoMiner database is a valuable collection of microarray data which can be also used as a data repository for future analyses.

References

[1]  Krug HF, Wick P (2011) Nanotoxicology: An interdisciplinary challenge. Angew Chem Int Ed in English 50: 1260–1278.
[2]  Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: Adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50: 63–88.
[3]  Nel A, Xia T, Meng H, Wang X, Lin S, et al.. (2012) Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc Chem Res.
[4]  Busch W, Kuhnel D, Schirmer K, Scholz S (2010) Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics 11: 65.
[5]  Fujita K, Horie M, Kato H, Endoh S, Suzuki M, et al. (2009) Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: Involvement of extracellular matrix and cell adhesion. Toxicol Lett 191: 109–117.
[6]  Gras R, Almonacid L, Ortega P, Serramia MJ, Gomez R, et al. (2009) Changes in gene expression pattern of human primary macrophages induced by carbosilane dendrimer 2G-NN16. Pharm Res 26: 577–586.
[7]  Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, et al. (2011) NCBI GEO: Archive for functional genomics data sets–10 years on. Nucleic Acids Res 39: D1005–10.
[8]  Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, et al. (2011) ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39: D1002–4.
[9]  Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, et al.. (2013) Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles. PloS One, in press.
[10]  Moher D, Liberati A, Tetzlaff J, Altman DG (2009) The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097 doi:10.1371/journal.pmed1000097.
[11]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25(1): 25–29.
[12]  Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation for large-scale molecular data sets. Nucleic Acids Res 40: D109–14.
[13]  Fadeel B, Savolainen K (2013) Broaden the discussion. Nat Nanotechnol. Feb 8(2): 71.
[14]  Hofer TP, Frankenberger M, Mages J, Lang R, Meyer P, et al. (2008) Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids. J Mol Med (Berl) 86: 323–332.
[15]  Huang YC, Karoly ED, Dailey LA, Schmitt MT, Silbajoris R, et al. (2011) Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter. J Toxicol Environ Health A 74: 296–312.
[16]  Karoly ED, Li Z, Dailey LA, Hyseni X, Huang YC (2007) Up-regulation of tissue factor in human pulmonary artery endothelial cells after ultrafine particle exposure. Environ Health Perspect 115: 535–540.
[17]  Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43: 6046–6051.
[18]  Kim EY, Schulz R, Swantek P, Kunstman K, Malim MH, et al. (2012) Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes. Gene Ther 19: 347–353.
[19]  Moos PJ, Olszewski K, Honeggar M, Cassidy P, Leachman S, et al. (2011) Responses of human cells to ZnO nanoparticles: A gene transcription study. Metallomics 3: 1199–1211.
[20]  Balakumaran A, Pawelczyk E, Ren J, Sworder B, Chaudhry A, et al. (2010) Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal) cells does not affect their “stemness”. PloS One 5: e11462.
[21]  Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, et al. (2011) Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 5: 9326–9338.
[22]  Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5: 299–314.
[23]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5: R80.
[24]  Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
[25]  Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy–analysis of affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315.
[26]  Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.
[27]  Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. (2012) Ensembl 2012. Nucleic Acids Res 40: D84–90.
[28]  Du P, Kibbe WA, Lin SM (2008) Lumi: A pipeline for processing illumina microarray. Bioinformatics 24: 1547–1548.
[29]  Smyth GK (2005) Limma: Linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer. 397–420.
[30]  Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, et al. (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23: 2700–2707.
[31]  Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, et al. (2005) BioMart and bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 21: 3439–3440.
[32]  Lucas A, Jasson S (2006) Using amap and ctc packages for huge clustering. R News 6: 58–60.
[33]  Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
[34]  Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 4: 1165–1188.
[35]  Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23: 257–258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133