Objective To comprehensively analyze the relationship between exposure to extremely low frequency electromagnetic fields (ELF-EMFs) and the development of female breast cancer. Methods Reports of case-control studies published from 1990 to 2010 were analyzed. The quality effect model was chosen to calculate total odds ratio (OR) depending on the data in studies and quality scores. Subgroup analyses were also performed by the situation of menopause, estrogenic receptor and exposure assessment respectively. Results For all 23 studies the OR was 1.07, 95% CI = 1.02–1.13, for estrogen receptor positive subgroup,OR = 1.11, 95% CI = 1.03–1.20; for premenopausal subgroup, OR = 1.11, 95% CI = 1.00–1.23. The results of other subgroups showed no significant association between ELF-EMF and female breast cancer. Conclusion ELF-EMFs might be related to an increased risk for female breast cancer, especially for premenopausal and ER+ females. However, it's necessary to undertake better epidemiologic researches to verify the association between ELF-EMF and female breast cancer due to the limits of current study, especially the one on exposure assessment.
References
[1]
Kleinerman RA, Linet MS, Hatch EE, Tarone RE, Black PM, et al. (2005) Self-reported Electrical Appliance Use and Risk of Adult Brain Tumors. American Journal of Epidemiology 161: 136–146.
[2]
Schüz J, Svendsen AL, Linet MS, McBride ML, Roman E, et al. (2007) Nighttime Exposure to Electromagnetic Fields and Childhood Leukemia: An Extended Pooled Analysis. American Journal of Epidemiology 166: 263–269.
[3]
Zhu K, Hunter S, Payne-Wilks K, Roland CL, Forbes DS (2003) Use of Electric Bedding Devices and Risk of Breast Cancer in African-American Women. American Journal of Epidemiology 158: 798–806.
[4]
Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109: 273–84.
[5]
Stevens RG (1987) Electric power use and breast cancer: a hypothesis. Am J Epidemiol 125: 556–61.
[6]
Erren TC (2001) A meta-analysis of epidemiologic studies of electric and magnetic fields and breast cancer in women and men. Bioelectromagnetics Suppl 5:S105–S119.
[7]
Chunhai Chen, Xiangyu Ma, Min Zhong, Zhengping Yu (2010) Extremely low-frequency electromagnetic fields exposure and female breast cancer risk: a meta-analysis based on 24,338 cases and 60,628 controls. Breast Cancer Res Treat. DOI10.1007/s10549-010-0782-6.
[8]
Wills G, Shca B, o' Commell D, Petersen J, Wekh V, et al. (2012) The Newcastle-Ottawa Scale(NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa: Ottawa Haospital Research Institute. Available: http://www.ohri.ca/programs/clinical_epi?demiology/oxford.asp. Accessed 2012 Nov 1.
[9]
Doi SAR, Thalib L (2008) A quality-effects model for meta-analysis. Epidemiology 19: 94–100 Erratum in Epidemiology 2010;21:278.
[10]
Doi SAR, Barendregt JJ, Mozurkewich EL (2011) Meta-analysis of heterogeneous clinical trials: an empirical example. Contemp Clin Trials 32: 288–298.
[11]
Norman RE, Byambaa M, De R, Butchart A, Scott J, et al. (2012) The long-term health consequences of child physical abuse, emotional abuse, and neglect: a systematic review and meta-analysis. PLoS Med 2012;9: e1001349.
[12]
Vena JE, Graham S, Hellmann R, Swanson M, Brasure J (1991) Use of electric blankets and risk of postmenopausal breast cancer. Am J Epidemiol 134: 180–185.
[13]
Loomis DP, Savitz DA, Ananth CV (1994) Breast cancer mortality among female electrical workers in the United States. Journal of the National Cancer Institute 86: 921–925.
[14]
Vena JE, Freudenheim JL, Marshall JR, Laughlin R, Swanson M, et al. (1994) Risk of premenopausal breast cancer and use of electric blankets. Am J Epidemiol 140: 974–979.
[15]
Coogan PF, Clapp RW, Newcomb PA, Wenzl TB, Bogdan G, et al. (1996) Occupational exposure to 60-hertz magnetic ?elds and risk of breast cancer in women. Epidemiology 7: 459–464.
[16]
Li C-Y, Theriault G, Lin RS (1997) Residential exposure to 60-Hertz magnetic fields and adult cancers in Taiwan. Epidemiology 8: 25–30.
[17]
Coogan FP, Aschengrau A (1998) Exposure to power frequency magnetic fields and risk of breast cancer in the Upper Cape Cod Cancer Incidence Study. Archives of Environmental Health 53: 359–367.
[18]
Gammon MD, Schoenberg JB, Britton JA, Kelsey JL, Stanford JL, et al. (1998) Electric blanket use and breast cancer risk among younger women. Am J Epidemiol 148: 556–563.
[19]
Feychting M, Forssen U, Rutqvist LE, Ahlbom A (1998) Magnetic Fields and Breast Cancer in Swedish Adults Residing near High-Voltage Power Lines. Epidemiology 9: 392–397.
[20]
Zheng T, Holford TR, Mayne ST, Owens PH, Zhang B, et al. (2000) Exposure to electromagnetic fields from use of electric blankets and other inhome electrical appliances and breast cancer risk. Am J Epidemiol 151: 1103–1111.
[21]
Forssen UM, Feychting M, Rutqvist LE, Floderus B, Ahlbom A (2000) Occupational and Residential Magnetic Field Exposure and Breast Cancer in Females. Epidemiology 11: 24–29.
[22]
McElroy JA, Newcomb PA, Remington PL, Egan KM, Titus-Ernstoff L, et al. (2001) Electric Blanket or Mattress Cover Use and Breast Cancer Incidence in Women 50–79 Years of Age. Epidemiology 12: 613–617.
[23]
Van Wijngaarden E, Nylander-French LA, Millikan RC, Savitz DA, Loomis D (2001) Population-based case-control study of occupational exposure to electromagnetic fields and breast cancer. Ann Epidemiol 11: 297–303.
[24]
Davis S, Mirick DK, Stevens RG (2002) Residential magnetic fields and the risk of breast cancer. American Journal of Epidemiology 155: 446–454.
[25]
Kabat GC, O'Leary ES, Schoenfeld ER, Greene JM, Grimson R, et al. (2003) Electric Blanket Use and Breast Cancer on Long Island. Epidemiology 14: 514–520.
[26]
Schoenfeld ER, O'Leary ES, Henderson K, Grimson R, Kabat GC, et al. (2003) Electromagnetic Fields and Breast Cancer on Long Island: A Case-Control Study. American Journal of Epidemiology 158: 47–58.
[27]
Kliukiene J, Tynes T, Andersen A (2003) Follow-up of radio and telegraph operators with exposure to electromagnetic fields and risk of breast cancer. Eur J Cancer Prev 12: 301–307.
[28]
Labreche F, Goldberg MS, Valois M-F, Nadon L, Richardson L, et al. (2003) Occupational exposures to extremely low frequency magnetic fields and postmenopausal breast cancer. American Journal of Industrial Medicine 44: 643–652.
[29]
London SJ, Pogoda JM, Hwang KL, Langholz B, Monroe KR, et al. (2003) Residential Magnetic Field Exposure and Breast Cancer Risk: A Nested Case-Control Study from a Multiethnic Cohort in Los Angeles County, California. American Journal of Epidemiology 158: 969–980.
[30]
Kliukiene J, Tynes T, Andersen A (2004) Residential and Occupational Exposures to 50-Hz Magnetic Fields and Breast Cancer in Women: A Population-based Study. American Journal of Epidemiology 159: 852–861.
[31]
Forssen UM, Rutqvist LE, Ahlbom A, Feychting M (2005) Occupational magnetic fields and female breast cancer: a casecontrol study using Swedish population registers and new exposure data. Am J Epidemiol 161: 250–259.
[32]
McElroy JA, Egan KM, Titus-Ernstoff L, Anderson HA, Trentham-Dietz A, et al. (2007) Occupational Exposure to Electromagnetic Field and Breast Cancer Risk in a Large, Population-Based, Case-Control Study in the United States. J Occup Environ Med 49: 266–74.
[33]
Baum A, Mevissen M, Kamino K, Mohr U, L?scher W (1995) A histopathological study on alterations in DMBA induced mammary carcinogenesis in rats with 50 Hz,100 μT magnetic field exposure. Carcinogenesis 16: 119–125.
[34]
Girgert R, Gründker C, Emons G, Hanf V (2008) Electromagnetic fields alter the expression of estrogen receptor cofactors in breast cancer cells. Bioelectromagnetics 29: 169–76.