全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Reduced Prevalence of Oral Human Papillomavirus (HPV) 4 Years after Bivalent HPV Vaccination in a Randomized Clinical Trial in Costa Rica

DOI: 10.1371/journal.pone.0068329

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Human papillomavirus (HPV) infection, particularly with type 16, causes a growing fraction of oropharyngeal cancers, whose incidence is increasing, mainly in developed countries. In a double-blind controlled trial conducted to investigate vaccine efficacy (VE) of the bivalent HPV 16/18 vaccine against cervical infections and lesions, we estimated VE against prevalent oral HPV infections 4 years after vaccination. Methods and Findings A total of 7,466 women 18–25 years old were randomized (1:1) to receive the HPV16/18 vaccine or hepatitis A vaccine as control. At the final blinded 4-year study visit, 5,840 participants provided oral specimens (91·9% of eligible women) to evaluate VE against oral infections. Our primary analysis evaluated prevalent oral HPV infection among all vaccinated women with oral and cervical HPV results. Corresponding VE against prevalent cervical HPV16/18 infection was calculated for comparison. Oral prevalence of identifiable mucosal HPV was relatively low (1·7%). Approximately four years after vaccination, there were 15 prevalent HPV16/18 infections in the control group and one in the vaccine group, for an estimated VE of 93·3% (95% CI = 63% to 100%). Corresponding efficacy against prevalent cervical HPV16/18 infection for the same cohort at the same visit was 72·0% (95% CI = 63% to 79%) (p versus oral VE = 0·04). There was no statistically significant protection against other oral HPV infections, though power was limited for these analyses. Conclusions HPV prevalence four years after vaccination with the ASO4-adjuvanted HPV16/18 vaccine was much lower among women in the vaccine arm compared to the control arm, suggesting that the vaccine affords strong protection against oral HPV16/18 infection, with potentially important implications for prevention of increasingly common HPV-associated oropharyngeal cancer. ClinicalTrials.gov, Registry number NCT00128661

References

[1]  Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, et al. (2005) Carcinogenicity of human papillomaviruses. Lancet Oncol 6: 204.
[2]  Herrero R, Castellsague X, Pawlita M, Lissowska J, Kee F, et al. (2003) Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst 95: 1772–1783.
[3]  Gillison ML, Chaturvedi AK, Lowy DR (2008) HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer 113: 3036–3046.
[4]  Brown LM, Check DP, Devesa SS (2011) Oropharyngeal cancer incidence trends: diminishing racial disparities. Cancer Causes Control 22: 753–763.
[5]  Hocking JS, Stein A, Conway EL, Regan D, Grulich A, et al. (2011) Head and neck cancer in Australia between 1982 and 2005 show increasing incidence of potentially HPV-associated oropharyngeal cancers. Br J Cancer 104: 886–891.
[6]  Reddy VM, Cundall-Curry D, Bridger MW (2010) Trends in the incidence rates of tonsil and base of tongue cancer in England, 1985–2006. Ann R Coll Surg Engl 92: 655–659.
[7]  Ligier K, Belot A, Launoy G, Velten M, Bossard N, et al. (2011) Descriptive epidemiology of upper aerodigestive tract cancers in France: incidence over 1980–2005 and projection to 2010. Oral Oncol 47: 302–307.
[8]  Blomberg M, Nielsen A, Munk C, Kjaer SK (2011) Trends in head and neck cancer incidence in Denmark, 1978–2007: focus on human papillomavirus associated sites. Int J Cancer 129: 733–741.
[9]  Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, et al. (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29: 4294–4301.
[10]  N?sman A, Attner P, Hammarstedt L, Du J, Eriksson M, et al. (2009) Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 125: 362–6.
[11]  De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, et al. (2012) The global burden of cancers attributable to infections in the year 2008: a review and synthetic analysis. Lancet Oncol 13: 607–615.
[12]  Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, et al. (2012) Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13: 89–99.
[13]  Herrero R, Wacholder S, Rodriguez AC, Solomon D, Gonzalez P, et al. (2011) Prevention of persistent human papillomavirus (HPV) infection by a HPV 16/18 vaccine: a community-based randomized clinical trial in Guanacaste, Costa Rica. Cancer Discovery 1: 408–419.
[14]  Munoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, et al. (2010) Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst 102: 325–339.
[15]  Kreimer AR, Gonzalez P, Katki HA, Porras C, Schiffman M, et al. (2011) Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncol 12: 862–870.
[16]  Giuliano AR, Palefsky JM, Goldstone S, Moreira ED Jr, Penny ME, et al. (2011) Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med 364: 401–411.
[17]  Palefsky JM, Giuliano AR, Goldstone S, Moreira ED Jr, Aranda C, et al. (2011) HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med 365: 1576–1585.
[18]  Rowhani-Rahbar A, Carter JJ, Hawes SE, Hughes JP, Weiss NS, et al. (2009) Antibody responses in oral fluid after administration of prophylactic human papillomavirus vaccines. J Infect Dis 200: 1452–1455.
[19]  Nardelli-Haefliger D, Wirthner D, Schiller JT, Lowy DR, Hildesheim A, et al. (2003) Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J.Natl Cancer Inst 95: 1128–1137.
[20]  Hildesheim A, Herrero R, Wacholder S, Rodriguez AC, Solomon D, et al. (2007) Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298: 743–753.
[21]  Herrero R, Hildesheim A, Rodriguez AC, Wacholder S, Bratti C, et al. (2008) Rationale and design of a community-based double-blind randomized clinical trial of an HPV 16 and 18 vaccine in Guanacaste, Costa Rica. Vaccine 26: 4795–4808.
[22]  Lum A, Le Marchand L (1998) A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies. Cancer Epidemiol Biomarkers Prev 7: 719–724.
[23]  Garcia-Closas M, Egan KM, Abruzzo J, Newcomb PA, Titus-Ernstoff L, et al. (2001) Collection of genomic DNA from adults in epidemiological studies by buccal cytobrush and mouthwash. Cancer Epidemiol Biomarkers Prev 10: 687–696.
[24]  Walsh DJ, Corey AC, Cotton RW, Forman L, Herrin GL Jr, et al. (1992) Isolation of deoxyribonucleic acid (DNA) from saliva and forensic science samples containing saliva. J Forensic Sci 37: 387–395.
[25]  Kleter B, van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, et al. (1999) Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol 37: 2508–2517.
[26]  Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, et al. (1998) Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am.J.Pathol 153: 1731–1739.
[27]  van Doorn LJ, Molijn A, Kleter B, Quint W, Colau B (2006) Highly effective detection of human papillomavirus 16 and 18 DNA by a testing algorithm combining broad-spectrum and type-specific PCR. J Clin Microbiol 44: 3292–3298.
[28]  Dessy FJ, Giannini SL, Bougelet CA, Kemp TJ, David MP, et al. (2008) Correlation between direct ELISA, single epitope-based inhibition ELISA and pseudovirion-based neutralization assay for measuring anti-HPV-16 and anti-HPV-18 antibody response after vaccination with the AS04-adjuvanted HPV-16/18 cervical cancer vaccine. Hum Vaccin 4: 425–434.
[29]  Rothman KJ, Boice JD (1982) Epidemiologic analysis with a programmable calculator. Boston, MA, USA: Epidemiology Resources Inc.
[30]  Agresti A (2002) Categorical data analysis, 2nd ed. New York, NY: Wiley.
[31]  Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42: 121–130.
[32]  Lang Kuhs KA, Gonzalez P, Quint W, Castro F, Hildesheim A, et al. (In Press) Prevalence of and Risk Factors for Oral Human Papillomavirus Infection Among Young Healthy Women in Costa Rica. J Infect Dis.
[33]  Kreimer AR, Bhatia RK, Messeguer AL, Gonzalez P, Herrero R, et al. (2010) Oral human papillomavirus in healthy individuals: a systematic review of the literature. Sex Transm Dis 37: 386–391.
[34]  Gillison ML, Broutian T, Pickard RK, Tong ZY, Xiao W, et al. (2012) Prevalence of oral HPV infection in the United States, 2009–2010. JAMA 307: 693–703.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133