[1] | Fadeel B, Kasemo B, Malmsten M, Str?mme M (2010) Nanomedicine: Reshaping clinical practice. J. Intern. Med. 267: 2–8.
|
[2] | European Commission (2012) A European strategy for Key Enabling Technologies – A bridge to growth and jobs. Brussels: COM 341 final.
|
[3] | Mihranyan A, Ferraz N, Str?mme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 57: 875–910.
|
[4] | Varshney HM, Shailender M (2012) Nanotechnology; Current Status In Pharmaceutical Science: A Review. Int. J. Therap. Appl. 6: 14–24.
|
[5] | Truitt B (2009) Magnesium Carbonate. In Handbook of Pharmaceutical Excipients, 6th ed.; Rowe R, Sheskey P, Quinn M, Eds.; Pharmaceutical Press: London; 397–400.
|
[6] | Deelman JC (2011) In Low Temperature Formation of Dolomite and Magnesite [Online] version 2.3 ed.; Compact Disc Publications: Eindhoven, 2011. Available: www.jcdeelman.demon.nl. Accessed 2012 Apr 18.
|
[7] | Pohl W (1990) Genesis of Magnesite Deposits - Models and Trends. Int. J. Earth. Sci. 79: 291–299.
|
[8] | Neuberg C, Rewald B (1908) Ueber Kolloide Und Gelatin?se Verbindungen Der Erdalkalien. Colloid Polymer Sci. 2: 354–357.
|
[9] | Kurov VI (1961) Alkyl Carbonate Salts.5. Methyl Carbonate Salts of Bivalent Metals. Russ. J. Gen. Chem. 31: 9–11.
|
[10] | Buzágh A (1926) Ueber Kolloide L?sungen Der Erdalkalikarbonate. Kolloid Z. 38: 222–226.
|
[11] | Khan N, Dollimore D, Alexander K, Wilburn FW (2001) The Origin of the Exothermic Peak in the Thermal Decomposition of Basic Magnesium Carbonate. Thermochim. Acta 367–368: 321–333.
|
[12] | Hashimoto H, Tomizawa T, Mitomo M (1968) Exothermic Process in the Differential Thermal Analysis Curves of Basic Magnesium Carbonate. Kogyo Kagaku Zasshi 71: 480–484.
|
[13] | Sawada Y, Uematsu K, Mizutani N, Kato M (1978) Thermal Decomposition of Hydromagnesite 4 MgCO3?Mg(OH)2?4 H2O under Different Partial Pressures of Carbon-Dioxide. Thermochim. Acta 27: 45–59.
|
[14] | Choudhary VR, Pataskar SG, Gunjikar VG, Zope GB (1994) Influence of Preparation Conditions of Basic Magnesium Carbonate on Its Thermal-Analysis. Thermochim. Acta 232: 95–110.
|
[15] | Dell RM, Weller SW (1959) The Thermal Decomposition of Nesquehonite MgCO3?3 H2O and Magnesium Ammonium Carbonate MgCO3?(NH4)2CO3?4 H2O. Trans Faraday Soc 55: 2203–2220.
|
[16] | Clark CB (1946) X-Ray Diffraction Data for Compounds in the System CaO-MgO-SiO2. J. Am. Ceram. Soc. 29: 25–30.
|
[17] | Rutt HN, Nicola JH (1974) Raman Spectra of Carbonates of Calcite Structure. J. Phys. C Solid State Phys. 7: 4522–4528.
|
[18] | Gouadec G, Colomban P (2007) Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties. Prog. Cryst. Growth Charact. Mater. 53: 1–56.
|
[19] | Raade G (1970) Dypingite, a New Hydrous Basic Carbonate of Magnesium, from Norway. Am. Mineral. 55: 1457–1465.
|
[20] | Santamaria M, Di Quarto F, Zanna S, Marcus P (2007) Initial Surface Film on Magnesium Metal: A Characterization by X-Ray Photoelectron Spectroscopy (XPS) and Photocurrent Spectroscopy (Pcs). Electrochim. Acta 53: 1314–1324.
|
[21] | Splinter SJ, Mcintyre NS, Lennard WN, Griffiths K, Palumbo G (1993) An Aes and Xps Study of the Initial Oxidation of Polycrystalline Magnesium with Water-Vapor at Room-Temperature. Surf. Sci. 292: 130–144.
|
[22] | Siegbahn K, Nordling C, Johansson G, Hedman J, Hedén PF, et al..(1969) Esca Applied to Free Molecules. North-Holland Publishing Company: Amsterdam.
|
[23] | Xie YM, Sherwood PMA (1990) X-Ray Photoelectron Spectroscopic Studies of Carbon-Fiber Surfaces.11. Differences in the Surface-Chemistry and Bulk Structure of Different Carbon-Fibers Based on Poly(Acrylonitrile) and Pitch and Comparison with Various Graphite Samples. Chem. Mater. 2, 293–299.
|
[24] | Gardner SD, Singamsetty CSK, Booth GL, He GR, Pittman CU (1995) Surface Characterization of Carbon-Fibers Using Angle-Resolved Xps and Iss. Carbon 33: 587–595.
|
[25] | Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, et al. (1985) Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure Appl. Chem. 57: 603–619.
|
[26] | Brunauer S, Emmett PH, Teller E (1938) Adsorption of Gases in Multimolecular Layers. JACS 60: 309–319.
|
[27] | Pires J, Pinto ML, Carvalho A, de Carvalho MB (2003) Assessment of Hydrophobic-Hydrophilic Properties of Microporous Materials from Water Adsorption Isotherms. Adsorption 9: 303–309.
|
[28] | Dubinin MM, Astakhov VA (1971) Description of Adsorption Equilibria of Vapors on Zeolites over Wide Ranges of Temperature and Pressure. In Molecular Sieve Zeolites-Ii, American Chemical Society: Washington, D C. 102: 69–85.
|
[29] | Verhoeven L, Lodewyckx P (2001) In Comparison of Dubinin–Radushkevich Micropore Volumes Obtained from N2, CO2 and H2O-Adsorption Isotherms, Carbon 2001 proceedings, Lexington (KY, USA), American Carbon Society: Conference proceeding avalibe from: http://acs.omnibooksonline.com/data/pape?rs/2001_10.2.pdf.
|
[30] | Botha A, Strydom CA (2003) Dta and FT-IR Analysis of the Rehydration of Basic Magnesium Carbonate. J. Therm. Anal. Calorim. 71: 987–995.
|
[31] | Ardizzone S, Bianchi CL, Fadoni M, Vercelli B (1997) Magnesium Salts and Oxide: An Xps Overview. Appl. Surf. Sci. 119: 253–259.
|
[32] | Dastgheib SA, Karanfil T (2005) The Effect of the Physical and Chemical Characteristics of Activated Carbons on the Adsorption Energy and Affinity Coefficient of Dubinin Equation. J. Colloid Interface Sci. 292: 312–321.
|