Recombinant production of complex eukaryotic proteins for structural analyses typically requires a profound screening process to identify suitable constructs for the expression of ample amounts of properly folded protein. Furthermore, the evaluation of an optimal expression host has a major impact on protein yield and quality as well as on actual cost of the production process. Here we present a novel fast expression system for multiple hosts based on a single donor vector termed pFlp-Bac-to-Mam. The range of applications of pFlp-Bac-to-Mam comprises highly efficient transient transfection of HEK293-6E in serum-free suspension culture and subsequent large-scale production of challenging proteins expressing in mg per Liter level using either the baculoviral expression vector system or stable CHO production cell lines generated by Flp-mediated cassette exchange. The success of the multi-host expression vector to identify the optimal expression strategy for efficient production of high quality protein is demonstrated in a comparative expression study of three model proteins representing different protein classes: intracellular expression using a fluorescent protein, secretion of a single-chain-Fv-hIgG1Fc fusion construct and production of a large amount of highly homogeneous protein sample of the extracellular domain of a Toll-like receptor. The evaluation of the production efficiency shows that the pFlp-Bac-to-Mam system allows a fast and individual optimization of the expression strategy for each protein class.
References
[1]
Aricescu AR, Assenberg R, Bill RM, Busso D, Chang VT, et al. (2006) Eukaryotic expression: developments for structural proteomics. Acta crystallographica 62: 1114–1124.
[2]
Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic acids research 30: E9.
[3]
Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92: 7297–7301.
[4]
Huh SH, Do HJ, Lim HY, Kim DK, Choi SJ, et al. (2007) Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals 35: 165–171.
[5]
Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, et al. (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic acids research 36: e96.
[6]
Bollin F, Dechavanne V, Chevalet L (2011) Design of Experiment in CHO and HEK transient transfection condition optimization. Protein expression and purification 78: 61–68.
[7]
Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. Journal of Biotechnology 153: 22–26.
[8]
Rajendra Y, Kiseljak D, Manoli S, Baldi L, Hacker DL, et al. (2012) Role of non-specific DNA in reducing coding DNA requirement for transient gene expression with CHO and HEK-293E cells. Biotechnology and Bioengineering 109: 2271–2278.
[9]
Hoeijmakers JH, Odijk H, Westerveld A (1987) Differences between rodent and human cell lines in the amount of integrated DNA after transfection. Experimental cell research 169: 111–119.
[10]
Stanley P (1989) Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Molecular and cellular biology 9: 377–383.
[11]
Davis SJ, Puklavec MJ, Ashford DA, Harlos K, Jones EY, et al. (1993) Expression of soluble recombinant glycoproteins with predefined glycosylation: application to the crystallization of the T-cell glycoprotein CD2. Protein engineering 6: 229–232.
[12]
Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33: 12746–12751.
[13]
Wilke S, Groebe L, Maffenbeier V, J?ger V, Gossen M, et al. (2011) Streamlining Homogeneous Glycoprotein Production for Biophysical and Structural Applications by Targeted Cell Line Development. PLoS ONE 6: e27829.
[14]
Novy R, Yeager K, Monsma S (1999) pTriEx-1 Multisystem Vector for protein expression in E. Coli, mammalian, and insect cells. Innovations 10: 5.
[15]
Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, et al. (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Research 35: e45–e45.
[16]
Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67: 4566–4579.
[17]
Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nature biotechnology 22: 1583–1587.
[18]
Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I (2010) New baculovirus expression tools for recombinant protein complex production. Journal of structural biology 172: 45–54.
[19]
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature biotechnology 22: 1567–1572.
[20]
Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S (2008) Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 111: 3830–3837.
[21]
Jin MS, Lee JO (2008) Application of hybrid LRR technique to protein crystallization. BMB reports 41: 353–357.
[22]
Blasey HD, J?ger V (1991) Strategies to increase the efficiency of membrane aerated and perfused animal cell bioreactors by an improved medium perfusion. In: Sasaki R, Ikura R, editors. Animal cell culture and production of biologicals. Dordrecht: Kluwer Academic Publishers. 61–73.
[23]
Berger I, Bieniossek C, Richmond TJ (2008) MultiBac: Multigene Baculovirus-Based Eukaryotic Protein Complex Production. Current Protocols in Protein Science 51: 1–26.
[24]
Wasilko DJ, Lee SE (2006) TIPS: Titerless Infected-Cells Preservation and Scale-Up. BioProcessing Journal 5: 29–32.
[25]
Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, et al. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071–1082.
[26]
Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, et al. (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31: 873–884.
[27]
Liang M, Dubel S, Li D, Queitsch I, Li W, et al. (2001) Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. Journal of immunological methods 247: 119–130.
[28]
Liang M, Dübel S (2010) Production of Recombinant Human IgG Antibodies in the Baculovirus Expression System. In: Kontermann R, Dübel S, editors. Antibody Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg. 453–470.