全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Pioglitazone Improves Reversal Learning and Exerts Mixed Cerebrovascular Effects in a Mouse Model of Alzheimer’s Disease with Combined Amyloid-β and Cerebrovascular Pathology

DOI: 10.1371/journal.pone.0068612

Full-Text   Cite this paper   Add to My Lib

Abstract:

Animal models of Alzheimer’s disease (AD) are invaluable in dissecting the pathogenic mechanisms and assessing the efficacy of potential new therapies. Here, we used the peroxisome proliferator-activated receptor gamma agonist pioglitazone in an attempt to rescue the pathogenic phenotype in adult (12 months) and aged (>18 months) bitransgenic A/T mice that overexpress a mutated human amyloid precursor protein (APPSwe,Ind) and a constitutively active form of transforming growth factor-β1 (TGF-β1). A/T mice recapitulate the AD-related cognitive deficits, amyloid beta (Aβ) and cerebrovascular pathologies, as well as the altered metabolic and vascular coupling responses to increased neuronal activity. Pioglitazone normalized neurometabolic and neurovascular coupling responses to sensory stimulation, and reduced cortical astroglial and hippocampal microglial activation in both age groups. Spatial learning and memory deficits in the Morris water maze were not rescued by pioglitazone, but reversal learning was improved in the adult cohort notwithstanding a progressing Aβ pathology. While pioglitazone preserved the constitutive nitric oxide synthesis in the vessel wall, it unexpectedly failed to restore cerebrovascular reactivity in A/T mice and even exacerbated the dilatory deficits. These data demonstrate pioglitazone’s efficacy on selective AD hallmarks in a complex AD mouse model of comorbid amyloidosis and cerebrovascular pathology. They further suggest a potential benefit of pioglitazone in managing neuroinflammation, cerebral perfusion and glucose metabolism in AD patients devoid of cerebrovascular pathology.

References

[1]  Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118: 103-113. doi:10.1007/s00401-009-0522-3. PubMed: 19319544.
[2]  Grammas P, Ovase R (2002) Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol 160: 1583-1587. doi:10.1016/S0002-9440(10)61105-4. PubMed: 12000710.
[3]  Tesseur I, Wyss-Coray T (2006) A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr Alzheimer Res 3: 505-513. doi:10.2174/156720506779025297. PubMed: 17168649.
[4]  Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E (2000) Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol 156: 139-150. doi:10.1016/S0002-9440(10)64713-X. PubMed: 10623661.
[5]  Ongali B, Nicolakakis N, Lecrux C, Aboulkassim T, Rosa-Neto P et al. (2010) Transgenic mice overexpressing APP and transforming growth factor-beta1 feature cognitive and vascular hallmarks of Alzheimer’s disease. Am J Pathol 177: 3071-3080. doi:10.2353/ajpath.2010.100339. PubMed: 21088218.
[6]  Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16: 1370-1371. doi:10.1038/nm1210-1370. PubMed: 21135839.
[7]  Geldmacher DS, Fritsch T, McClendon MJ, Landreth G (2011) A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol 68: 45-50. doi:10.1001/archneurol.2010.229. PubMed: 20837824.
[8]  Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H et al. (2011) Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32: 1626-1633. doi:10.1016/j.neurobiolaging.2009.10.009. PubMed: 19923038.
[9]  Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M et al. (1997) Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 47: 29-35. PubMed: 9037440.
[10]  Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R et al. (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23: 7504-7509. PubMed: 12930788.
[11]  Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I et al. (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128: 1442-1453. doi:10.1093/brain/awh452. PubMed: 15817521.
[12]  Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P et al. (2008) Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci 28: 9287-9296. doi:10.1523/JNEUROSCI.3348-08.2008. PubMed: 18784309.
[13]  Gaertner RF, Wyss-Coray T, Von Euw D, Lesné S, Vivien D et al. (2005) Reduced brain tissue perfusion in TGF-beta 1 transgenic mice showing Alzheimer’s disease-like cerebrovascular abnormalities. Neurobiol Dis 19: 38-46. doi:10.1016/j.nbd.2004.11.008. PubMed: 15837559.
[14]  Nicolakakis N, Aboulkassim T, Aliaga A, Tong XK, Rosa-Neto P et al. (2011) Intact memory in TGF-β1 transgenic mice featuring chronic cerebrovascular deficit: Recovery with pioglitazone. J Cereb Blood Flow Metab 31: 200-211. doi:10.1038/jcbfm.2010.78. PubMed: 20571524.
[15]  Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM et al. (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20: 4050-4058. PubMed: 10818140.
[16]  Deipolyi AR, Fang S, Palop JJ, Yu GQ, Wang X et al. (2008) Altered navigational strategy use and visuospatial deficits in hAPP transgenic mice. Neurobiol Aging 29: 253-266. doi:10.1016/j.neurobiolaging.2006.10.021. PubMed: 17126954.
[17]  Gallagher M, Burwell R, Burchinal M (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 107: 618-626. doi:10.1037/0735-7044.107.4.618. PubMed: 8397866.
[18]  Maei HR, Zaslavsky K, Teixeira CM, Frankland PW (2009) What is the Most Sensitive Measure of Water Maze Probe Test Performance? Front Integr Neurosci 3: 4. PubMed: 19404412.
[19]  Chen G, Chen KS, Knox J, Inglis J, Bernard A et al. (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408: 975-979. doi:10.1038/35050103. PubMed: 11140684.
[20]  Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E et al. (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24: 10117-10127. doi:10.1523/JNEUROSCI.3581-04.2004. PubMed: 15537882.
[21]  Tong XK, Lecrux C, Rosa-Neto P (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 32: 4705-4715. doi:10.1523/JNEUROSCI.0169-12.2012. PubMed: 22492027.
[22]  Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. xxii. San Diego: Academic Press. p. 186. of plates p.
[23]  Tong XK, Nicolakakis N, Kocharyan A, Hamel E (2005) Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. J Neurosci 25: 11165-11174. doi:10.1523/JNEUROSCI.4031-05.2005. PubMed: 16319316.
[24]  Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31: 1354-1370. doi:10.1038/jcbfm.2011.43. PubMed: 21468088.
[25]  Niwa K, Haensel C, Ross ME, Iadecola C (2001) Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 88: 600-608. doi:10.1161/01.RES.88.6.600. PubMed: 11282894.
[26]  Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5 Suppl 1: S24. doi:10.1186/1755-1536-5-S1-S24. PubMed: 23259531.
[27]  Lan TH, Huang XQ, Tan HM (2013) Vascular fibrosis in atherosclerosis. Cardiovasc Pathol. PubMed: 23375582.
[28]  Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J et al. (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35: 1-6. PubMed: 8271029.
[29]  Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B et al. (2004) MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63: 2332-2340. doi:10.1212/01.WNL.0000147469.18313.3B. PubMed: 15623696.
[30]  Langbaum JB, Chen K, Lee W, Reschke C, Bandy D et al. (2009) Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45: 1107-1116. doi:10.1016/j.neuroimage.2008.12.072. PubMed: 19349228.
[31]  Niwa K, Kazama K, Younkin SG, Carlson GA, Iadecola C (2002) Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis 9: 61-68. doi:10.1006/nbdi.2001.0460. PubMed: 11848685.
[32]  Melrose RJ, Campa OM, Harwood DG, Osato S, Mandelkern MA et al. (2009) The neural correlates of naming and fluency deficits in Alzheimer’s disease: an FDG-PET study. Int J Geriatr Psychiatry 24: 885-893. doi:10.1002/gps.2229. PubMed: 19296551.
[33]  Chuquet J, Quilichini P, Nimchinsky EA, Buzsáki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30: 15298-15303. doi:10.1523/JNEUROSCI.0762-10.2010. PubMed: 21068334.
[34]  Pellerin L, Magistretti PJ (2003) How to balance the brain energy budget while spending glucose differently. J Physiol 546: 325. doi:10.1113/jphysiol.2002.035105. PubMed: 12527720.
[35]  Izawa Y, Takahashi S, Suzuki N (2009) Pioglitazone enhances pyruvate and lactate oxidation in cultured neurons but not in cultured astroglia. Brain Res 1305: 64-73. doi:10.1016/j.brainres.2009.09.098. PubMed: 19800324.
[36]  Dello Russo C, Gavrilyuk V, Weinberg G, Almeida A, Bolanos JP et al. (2003) Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 278: 5828-5836. doi:10.1074/jbc.M208132200. PubMed: 12486128.
[37]  Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12: 1005-1015. PubMed: 16960575.
[38]  Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA et al. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43-50. doi:10.1038/nn980. PubMed: 12469126.
[39]  Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32: 160-169. doi:10.1016/j.tins.2008.11.005. PubMed: 19162338.
[40]  Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol (Oxf) 203: 47-59. doi:10.1111/j.1748-1716.2011.02256.x. PubMed: 21272266.
[41]  Niwa K, Porter VA, Kazama K, Cornfield D, Carlson GA et al. (2001) A beta-peptides enhance vasoconstriction in cerebral circulation. Am J Physiol Heart Circ Physiol 281: H2417-H2424. PubMed: 11709407.
[42]  Rivest S (2011) The promise of anti-inflammatory therapies for CNS injuries and diseases. Expert Rev Neurother 11: 783-786. doi:10.1586/ern.11.64. PubMed: 21651326.
[43]  Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T et al. (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23: 9796-9804. PubMed: 14586007.
[44]  de la Torre JC (1999) Critical threshold cerebral hypoperfusion causes Alzheimer’s disease? Acta Neuropathol 98: 1-8. doi:10.1007/s004010051044. PubMed: 10412794.
[45]  Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64: 575-611. doi:10.1016/S0301-0082(00)00068-X. PubMed: 11311463.
[46]  Galea E, Feinstein DL, Lacombe P (2006) Pioglitazone does not increase cerebral glucose utilisation in a murine model of Alzheimer’s disease and decreases it in wild-type mice. Diabetologia 49: 2153-2161. doi:10.1007/s00125-006-0326-0. PubMed: 16830140.
[47]  Santello M, Volterra A (2010) Neuroscience: Astrocytes as aide-mémoires. Nature 463: 169-170. doi:10.1038/463169a. PubMed: 20075911.
[48]  Nicolakakis N, Hamel E (2010) The Nuclear Receptor PPARgamma as a Therapeutic Target for Cerebrovascular and Brain Dysfunction in Alzheimer’s Disease. Front Aging Neurosci 2: ([MedlinePgn:]) PubMed: 20725514.
[49]  Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57: 177-179. doi:10.1111/j.1532-5415.2009.02067.x. PubMed: 19170800.
[50]  Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15: 228-285.10.1038/mp.2009.72. PubMed: 19621015.
[51]  Levy-Gigi E, Kelemen O, Gluck MA, Kéri S (2011) Impaired context reversal learning, but not cue reversal learning, in patients with amnestic mild cognitive impairment. Neuropsychologia 49: 3320-3326. doi:10.1016/j.neuropsychologia.2011.08.005. PubMed: 21856321.
[52]  Omae T, Nagaoka T, Tanano I, Yoshida A (2011) Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, induces dilation of isolated porcine retinal arterioles: Role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci 52: 6749-6756. doi:10.1167/iovs.10-6826. PubMed: 21757589.
[53]  Nomura H, Yamawaki H, Mukohda M, Okada M, Hara Y (2008) Mechanisms underlying pioglitazone-mediated relaxation in isolated blood vessel. J Pharmacol Sci 108: 258-265. doi:10.1254/jphs.08117FP. PubMed: 18987433.
[54]  Yu L, Jin X, Yang Y, Cui N, Jiang C (2011) Rosiglitazone inhibits vascular KATP channels and coronary vasodilation produced by isoprenaline. Br J Pharmacol 164: 2064-2072. doi:10.1111/j.1476-5381.2011.01539.x. PubMed: 21671900.
[55]  Kitazono T, Heistad DD, Faraci FM (1993) Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in vivo. Am J Physiol 265: H581-H585. PubMed: 8368361.
[56]  Mathie RT, Ralevic V, Alexander B, Burnstock G (1991) Nitric oxide is the mediator of ATP-induced dilatation of the rabbit hepatic arterial vascular bed. Br J Pharmacol 103: 1602-1606. doi:10.1111/j.1476-5381.1991.tb09834.x. PubMed: 1884115.
[57]  Tong XK, Nicolakakis N, Fernandes P, Ongali B, Brouillette J et al. (2009) Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice. Neurobiol Dis 35: 406-414. doi:10.1016/j.nbd.2009.06.003. PubMed: 19524673.
[58]  Vedernikov YP, Fulep EE, Saade GR, Garfield RE (2002) Calcitonin gene-related peptide dilates the pregnant rat uterine vascular bed via guanylate cyclase, ATP- and Ca-sensitive potassium channels and gap junctions. Curr Med Res Opin 18: 465-470. doi:10.1185/030079902125001001. PubMed: 12564657.
[59]  Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M et al. (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7: 612-618. doi:10.1038/87945. PubMed: 11329064.
[60]  Han BH, Zhou ML, Abousaleh F, Brendza RP, Dietrich HH et al. (2008) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J Neurosci 28: 13542-13550. doi:10.1523/JNEUROSCI.4686-08.2008. PubMed: 19074028.
[61]  Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH (2010) Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College Of Cardiology Foundation. J Am Coll Cardiol 55: 1885-1894. doi:10.1016/j.jacc.2010.02.014. PubMed: 20413044.
[62]  Ciudin A, Hernandez C, Simó R (2012) Update on Cardiovascular safety of PPARgamma agonists and relevance to medicinal chemistry and clinical pharmacology. Curr Top Med Chem, 12: 585–604. PubMed: 22242856.
[63]  Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298: 1180-1188. doi:10.1001/jama.298.10.1180. PubMed: 17848652.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133