[1] | Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118: 103-113. doi:10.1007/s00401-009-0522-3. PubMed: 19319544.
|
[2] | Grammas P, Ovase R (2002) Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol 160: 1583-1587. doi:10.1016/S0002-9440(10)61105-4. PubMed: 12000710.
|
[3] | Tesseur I, Wyss-Coray T (2006) A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr Alzheimer Res 3: 505-513. doi:10.2174/156720506779025297. PubMed: 17168649.
|
[4] | Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E (2000) Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol 156: 139-150. doi:10.1016/S0002-9440(10)64713-X. PubMed: 10623661.
|
[5] | Ongali B, Nicolakakis N, Lecrux C, Aboulkassim T, Rosa-Neto P et al. (2010) Transgenic mice overexpressing APP and transforming growth factor-beta1 feature cognitive and vascular hallmarks of Alzheimer’s disease. Am J Pathol 177: 3071-3080. doi:10.2353/ajpath.2010.100339. PubMed: 21088218.
|
[6] | Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16: 1370-1371. doi:10.1038/nm1210-1370. PubMed: 21135839.
|
[7] | Geldmacher DS, Fritsch T, McClendon MJ, Landreth G (2011) A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol 68: 45-50. doi:10.1001/archneurol.2010.229. PubMed: 20837824.
|
[8] | Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H et al. (2011) Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32: 1626-1633. doi:10.1016/j.neurobiolaging.2009.10.009. PubMed: 19923038.
|
[9] | Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M et al. (1997) Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 47: 29-35. PubMed: 9037440.
|
[10] | Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R et al. (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23: 7504-7509. PubMed: 12930788.
|
[11] | Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I et al. (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128: 1442-1453. doi:10.1093/brain/awh452. PubMed: 15817521.
|
[12] | Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P et al. (2008) Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci 28: 9287-9296. doi:10.1523/JNEUROSCI.3348-08.2008. PubMed: 18784309.
|
[13] | Gaertner RF, Wyss-Coray T, Von Euw D, Lesné S, Vivien D et al. (2005) Reduced brain tissue perfusion in TGF-beta 1 transgenic mice showing Alzheimer’s disease-like cerebrovascular abnormalities. Neurobiol Dis 19: 38-46. doi:10.1016/j.nbd.2004.11.008. PubMed: 15837559.
|
[14] | Nicolakakis N, Aboulkassim T, Aliaga A, Tong XK, Rosa-Neto P et al. (2011) Intact memory in TGF-β1 transgenic mice featuring chronic cerebrovascular deficit: Recovery with pioglitazone. J Cereb Blood Flow Metab 31: 200-211. doi:10.1038/jcbfm.2010.78. PubMed: 20571524.
|
[15] | Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM et al. (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20: 4050-4058. PubMed: 10818140.
|
[16] | Deipolyi AR, Fang S, Palop JJ, Yu GQ, Wang X et al. (2008) Altered navigational strategy use and visuospatial deficits in hAPP transgenic mice. Neurobiol Aging 29: 253-266. doi:10.1016/j.neurobiolaging.2006.10.021. PubMed: 17126954.
|
[17] | Gallagher M, Burwell R, Burchinal M (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 107: 618-626. doi:10.1037/0735-7044.107.4.618. PubMed: 8397866.
|
[18] | Maei HR, Zaslavsky K, Teixeira CM, Frankland PW (2009) What is the Most Sensitive Measure of Water Maze Probe Test Performance? Front Integr Neurosci 3: 4. PubMed: 19404412.
|
[19] | Chen G, Chen KS, Knox J, Inglis J, Bernard A et al. (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408: 975-979. doi:10.1038/35050103. PubMed: 11140684.
|
[20] | Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E et al. (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24: 10117-10127. doi:10.1523/JNEUROSCI.3581-04.2004. PubMed: 15537882.
|
[21] | Tong XK, Lecrux C, Rosa-Neto P (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 32: 4705-4715. doi:10.1523/JNEUROSCI.0169-12.2012. PubMed: 22492027.
|
[22] | Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. xxii. San Diego: Academic Press. p. 186. of plates p.
|
[23] | Tong XK, Nicolakakis N, Kocharyan A, Hamel E (2005) Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. J Neurosci 25: 11165-11174. doi:10.1523/JNEUROSCI.4031-05.2005. PubMed: 16319316.
|
[24] | Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31: 1354-1370. doi:10.1038/jcbfm.2011.43. PubMed: 21468088.
|
[25] | Niwa K, Haensel C, Ross ME, Iadecola C (2001) Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 88: 600-608. doi:10.1161/01.RES.88.6.600. PubMed: 11282894.
|
[26] | Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5 Suppl 1: S24. doi:10.1186/1755-1536-5-S1-S24. PubMed: 23259531.
|
[27] | Lan TH, Huang XQ, Tan HM (2013) Vascular fibrosis in atherosclerosis. Cardiovasc Pathol. PubMed: 23375582.
|
[28] | Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J et al. (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35: 1-6. PubMed: 8271029.
|
[29] | Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B et al. (2004) MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63: 2332-2340. doi:10.1212/01.WNL.0000147469.18313.3B. PubMed: 15623696.
|
[30] | Langbaum JB, Chen K, Lee W, Reschke C, Bandy D et al. (2009) Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45: 1107-1116. doi:10.1016/j.neuroimage.2008.12.072. PubMed: 19349228.
|
[31] | Niwa K, Kazama K, Younkin SG, Carlson GA, Iadecola C (2002) Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis 9: 61-68. doi:10.1006/nbdi.2001.0460. PubMed: 11848685.
|
[32] | Melrose RJ, Campa OM, Harwood DG, Osato S, Mandelkern MA et al. (2009) The neural correlates of naming and fluency deficits in Alzheimer’s disease: an FDG-PET study. Int J Geriatr Psychiatry 24: 885-893. doi:10.1002/gps.2229. PubMed: 19296551.
|
[33] | Chuquet J, Quilichini P, Nimchinsky EA, Buzsáki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30: 15298-15303. doi:10.1523/JNEUROSCI.0762-10.2010. PubMed: 21068334.
|
[34] | Pellerin L, Magistretti PJ (2003) How to balance the brain energy budget while spending glucose differently. J Physiol 546: 325. doi:10.1113/jphysiol.2002.035105. PubMed: 12527720.
|
[35] | Izawa Y, Takahashi S, Suzuki N (2009) Pioglitazone enhances pyruvate and lactate oxidation in cultured neurons but not in cultured astroglia. Brain Res 1305: 64-73. doi:10.1016/j.brainres.2009.09.098. PubMed: 19800324.
|
[36] | Dello Russo C, Gavrilyuk V, Weinberg G, Almeida A, Bolanos JP et al. (2003) Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 278: 5828-5836. doi:10.1074/jbc.M208132200. PubMed: 12486128.
|
[37] | Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12: 1005-1015. PubMed: 16960575.
|
[38] | Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA et al. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43-50. doi:10.1038/nn980. PubMed: 12469126.
|
[39] | Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32: 160-169. doi:10.1016/j.tins.2008.11.005. PubMed: 19162338.
|
[40] | Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol (Oxf) 203: 47-59. doi:10.1111/j.1748-1716.2011.02256.x. PubMed: 21272266.
|
[41] | Niwa K, Porter VA, Kazama K, Cornfield D, Carlson GA et al. (2001) A beta-peptides enhance vasoconstriction in cerebral circulation. Am J Physiol Heart Circ Physiol 281: H2417-H2424. PubMed: 11709407.
|
[42] | Rivest S (2011) The promise of anti-inflammatory therapies for CNS injuries and diseases. Expert Rev Neurother 11: 783-786. doi:10.1586/ern.11.64. PubMed: 21651326.
|
[43] | Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T et al. (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23: 9796-9804. PubMed: 14586007.
|
[44] | de la Torre JC (1999) Critical threshold cerebral hypoperfusion causes Alzheimer’s disease? Acta Neuropathol 98: 1-8. doi:10.1007/s004010051044. PubMed: 10412794.
|
[45] | Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64: 575-611. doi:10.1016/S0301-0082(00)00068-X. PubMed: 11311463.
|
[46] | Galea E, Feinstein DL, Lacombe P (2006) Pioglitazone does not increase cerebral glucose utilisation in a murine model of Alzheimer’s disease and decreases it in wild-type mice. Diabetologia 49: 2153-2161. doi:10.1007/s00125-006-0326-0. PubMed: 16830140.
|
[47] | Santello M, Volterra A (2010) Neuroscience: Astrocytes as aide-mémoires. Nature 463: 169-170. doi:10.1038/463169a. PubMed: 20075911.
|
[48] | Nicolakakis N, Hamel E (2010) The Nuclear Receptor PPARgamma as a Therapeutic Target for Cerebrovascular and Brain Dysfunction in Alzheimer’s Disease. Front Aging Neurosci 2: ([MedlinePgn:]) PubMed: 20725514.
|
[49] | Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57: 177-179. doi:10.1111/j.1532-5415.2009.02067.x. PubMed: 19170800.
|
[50] | Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15: 228-285.10.1038/mp.2009.72. PubMed: 19621015.
|
[51] | Levy-Gigi E, Kelemen O, Gluck MA, Kéri S (2011) Impaired context reversal learning, but not cue reversal learning, in patients with amnestic mild cognitive impairment. Neuropsychologia 49: 3320-3326. doi:10.1016/j.neuropsychologia.2011.08.005. PubMed: 21856321.
|
[52] | Omae T, Nagaoka T, Tanano I, Yoshida A (2011) Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, induces dilation of isolated porcine retinal arterioles: Role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci 52: 6749-6756. doi:10.1167/iovs.10-6826. PubMed: 21757589.
|
[53] | Nomura H, Yamawaki H, Mukohda M, Okada M, Hara Y (2008) Mechanisms underlying pioglitazone-mediated relaxation in isolated blood vessel. J Pharmacol Sci 108: 258-265. doi:10.1254/jphs.08117FP. PubMed: 18987433.
|
[54] | Yu L, Jin X, Yang Y, Cui N, Jiang C (2011) Rosiglitazone inhibits vascular KATP channels and coronary vasodilation produced by isoprenaline. Br J Pharmacol 164: 2064-2072. doi:10.1111/j.1476-5381.2011.01539.x. PubMed: 21671900.
|
[55] | Kitazono T, Heistad DD, Faraci FM (1993) Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in vivo. Am J Physiol 265: H581-H585. PubMed: 8368361.
|
[56] | Mathie RT, Ralevic V, Alexander B, Burnstock G (1991) Nitric oxide is the mediator of ATP-induced dilatation of the rabbit hepatic arterial vascular bed. Br J Pharmacol 103: 1602-1606. doi:10.1111/j.1476-5381.1991.tb09834.x. PubMed: 1884115.
|
[57] | Tong XK, Nicolakakis N, Fernandes P, Ongali B, Brouillette J et al. (2009) Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice. Neurobiol Dis 35: 406-414. doi:10.1016/j.nbd.2009.06.003. PubMed: 19524673.
|
[58] | Vedernikov YP, Fulep EE, Saade GR, Garfield RE (2002) Calcitonin gene-related peptide dilates the pregnant rat uterine vascular bed via guanylate cyclase, ATP- and Ca-sensitive potassium channels and gap junctions. Curr Med Res Opin 18: 465-470. doi:10.1185/030079902125001001. PubMed: 12564657.
|
[59] | Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M et al. (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7: 612-618. doi:10.1038/87945. PubMed: 11329064.
|
[60] | Han BH, Zhou ML, Abousaleh F, Brendza RP, Dietrich HH et al. (2008) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J Neurosci 28: 13542-13550. doi:10.1523/JNEUROSCI.4686-08.2008. PubMed: 19074028.
|
[61] | Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH (2010) Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College Of Cardiology Foundation. J Am Coll Cardiol 55: 1885-1894. doi:10.1016/j.jacc.2010.02.014. PubMed: 20413044.
|
[62] | Ciudin A, Hernandez C, Simó R (2012) Update on Cardiovascular safety of PPARgamma agonists and relevance to medicinal chemistry and clinical pharmacology. Curr Top Med Chem, 12: 585–604. PubMed: 22242856.
|
[63] | Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298: 1180-1188. doi:10.1001/jama.298.10.1180. PubMed: 17848652.
|