Background Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g?1; slow growers prevalence from 2.9×105 to 1.2×107 cells g?1. Conclusions This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected.
References
[1]
Cook JL (2010) Nontuberculous mycobacteria: opportunistic environmental pathogens for predisposed hosts. British Medical Bulletin 96: 45–59.
[2]
Falkinham JO (1996) Epidemiology of infection by nontuberculous mycobacteria. Clinical Microbiology Reviews 9: 177–215.
[3]
Wagner D, Young LS (2004) Nontuberculous mycobacterial infections: A clinical review. Infection 32: 257–270.
[4]
Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, et al. (2007) An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. American Journal of Respiratory and Critical Care Medicine 175: 367–416.
[5]
Stahl DA, Urbance JW (1990) The division between fast-growing and slow-growing species corresponds to natural relationships among the Mycobacteria. Journal of Bacteriology 172: 116–124.
[6]
Leclerc MC, Thomas F, Guegan JF (2003) Evidence for phylogenetic inheritance in pathogenicity of Mycobacterium. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 83: 265–274.
[7]
Salah IB, Ghigo E, Drancourt M (2009) Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clinical Microbiology and Infection 15: 894–905.
[8]
Alexander K, Laver P, Michel A, Williams M, van Helden P, et al. (2010 ) Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis.
[9]
Fine PEM (1995) Variation in protection by BCG – implications of and for heterologous immunity. Lancet 346: 1339–1345.
[10]
Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, et al. (2002) Occurrence of mycobacteria in water treatment lines and in water distribution systems. Applied and Environmental Microbiology 68: 5318–5325.
[11]
September SM, Brozel VS, Venter SN (2004) Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Applied and Environmental Microbiology 70: 7571–7573.
[12]
Covert TC, Rodgers MR, Reyes AL, Stelma GN (1999) Occurrence of nontuberculous mycobacteria in environmental samples. Applied and Environmental Microbiology 65: 2492–2496.
[13]
Falkinham JO (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. Journal of Applied Microbiology 107: 356–367.
[14]
Drewe JA, Mwangi D, Donoghue HD, Cromie RL (2009) PCR analysis of the presence and location of Mycobacterium avium in a constructed reed bed, with implications for avian tuberculosis control. FEMS Microbiology Ecology 67: 320–328.
[15]
Thorel MF, Falkinham JO, Moreau RG (2004) Environmental mycobacteria from alpine and subalpine habitats. FEMS Microbiology Ecology 49: 343–347.
[16]
Iivanainen E (1995) Isolation of Mycobacteria from acidic forest soil samples- comparison of culture methods. Journal of Applied Bacteriology 78: 663–668.
[17]
Kirschner RA, Parker BC, Falkinham JO (1999) Humic and fulvic acids stimulate the growth of Mycobacterium avium. FEMS Microbiology Ecology 30: 327–332.
[18]
Iivanainen E, Martikainen P, Vaananen P, Katila ML (1999) Environmental factors affecting the occurrence of mycobacteria in brook sediments. Journal of Applied Microbiology 86: 673–681.
[19]
Torvinen E, Torkko P, Helena RAN (2010) Real-time PCR detection of environmental mycobacteria in house dust. Journal of Microbiological Methods 82: 78–84.
[20]
Jord?o Junior CM, Lopes FCM, David S, Farache Filho A, Leite CQF (2009) Detection of nontuberculous mycobacteria from water buffalo raw milk in Brazil. Food Microbiology 26: 658–661.
[21]
Marsollier L, Robert R, Aubry J, Saint Andre J-P, Kouakou H, et al. (2002) Aquatic Insects as a Vector for Mycobacterium ulcerans. Applied and Environmental Microbiology 68: 4623–4628.
[22]
Ghaemi E, Ghazisaidi K, Koohsari H, Khodabakhshi B, Mansoorian A (2006) Environmental mycobacteria in areas of high and low tuberculosis prevalence in the Islamic Republic of Iran. Eastern Mediterranean Health Journal 12: 280–285.
[23]
Kamala T, Paramasivan CN, Herbert D, Venkatesan P, Prabhakar R (1994) Isolation and identification of Environmental Mycobacteria in the Mycobacterium bovis BCG trial area of south India. Applied and Environmental Microbiology 60: 2180–2183.
[24]
Young JS, Gormley E, Wellington EMH (2005) Molecular detection of Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in soil. Applied and Environmental Microbiology 71: 1946–1952.
[25]
Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, et al. (2006) Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environmental Microbiology 8: 836–847.
[26]
Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, et al. (2005) Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology 51: 375–388.
[27]
Kopecky J, Kyselkova M, Omelka M, Cermak L, Novotna J, et al. (2011) Environmental mycobacteria closely related to the pathogenic species evidenced in an acidic forest wetland. Soil Biology & Biochemistry 43: 697–700.
[28]
Niva M, Hernesmaa A, Haahtela K, Salkinoja-Salonen M, Sivonen K, et al. (2006) Actinobacterial communities of boreal forest soil and lake water are rich in mycobacteria. Boreal Environment Research 11: 45–53.
[29]
Torvinen E, Torkko P, Nevalainen A, Rintala H (2010) Real-time PCR detection of environmental mycobacteria in house dust. Journal of Microbiological Methods 82: 78–84.
[30]
Jacobs J, Rhodes M, Sturgis B, Wood B (2009) Influence of Environmental Gradients on the Abundance and Distribution of Mycobacterium spp. in a Coastal Lagoon Estuary. Applied and Environmental Microbiology 75.
[31]
Tortoli E (2003) Impact of Genotypic Studies on Mycobacterial Taxonomy: the New Mycobacteria of the 1990s. Clinical Microbiology Reviews 16: 319–354.
[32]
Dowd S, Sun Y, Secor P, Rhoads D, Wolcott B, et al. (2008) Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8: 43.
[33]
Pontiroli A, Travis ER, Sweeney FP, Porter D, Gaze WH, et al. (2011) Pathogen Quantitation in Complex Matrices: A Multi-Operator Comparison of DNA Extraction Methods with a Novel Assessment of PCR Inhibition. Plos One 6: e17916.
[34]
Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes: characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research 17: 7843–7853.
[35]
Bailey MT, Walton JC, Dowd SE, Weil ZM, Nelson RJ (2010) Photoperiod modulates gut bacteria composition in male Siberian hamsters (Phodopus sungorus). Brain, Behavior, and Immunity 24: 577–584.
[36]
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537–7541.
[37]
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biolgy 8: R143.
[38]
Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12: 118–123.
[39]
Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology 12: 1889–1898.
[40]
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, et al. (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266–267.
[41]
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature methods 7: 335–336.
[42]
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21: 494–504.
[43]
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35: 7188–7196.
[44]
Li WZ, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.
[45]
Schloss PD (2009) A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies. Plos One 4: 9.
[46]
Ludwig W, Strunk O, Westram R, Richter L, Meier H, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371.
[47]
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228–8235.
[48]
Hamady M, Lozupone C, Knight R (2009) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME Journal 4: 17–27.
[49]
Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296–310.
[50]
Staley JT, Konopka A (1985) Measurement of in Situ Activities of Nonphotosynthetic Microorganisms in Aquatic and Terrestrial Habitats. Annual Review of Microbiology 39: 321–346.
[51]
Murcia MI, Tortoli E, Menendez MC, Palenque E, Garcia MJ (2006) Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. International Journal of Systematic and Evolutionary Microbiology 56: 2049–2054.
[52]
Tortoli E, Pecorari M, Fabio G, Messino M, Fabio A (2010) Commercial DNA Probes for Mycobacteria Incorrectly Identify a Number of Less Frequently Encountered Species. Journal of Clinical Microbiology 48: 307–310.
[53]
Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141.
[54]
Calvo-Bado LA, Oakley BB, Dowd SE, Green LE, Medley GF, et al.. (2011) Ovine pedomics: the first study of the ovine foot 16S rRNA-based microbiome. ISME Journal.
[55]
Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology 19: 5555–5565.
[56]
Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nature Methods 7: 668–669.
[57]
Rogall T, Wolters J, Flohr T, B?ttger EC (1990) Towards a Phylogeny and Definition of Species at the Molecular Level within the Genus Mycobacterium. International Journal of Systematic Bacteriology 40: 323–330.
[58]
Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, K?mpfer P, et al. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology 52: 1043–1047.
[59]
Devulder G, de Montclos MP, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. International Journal of Systematic and Evolutionary Microbiology 55: 293–302.
[60]
Mignard S, Flandrois J-P (2008) A seven-gene, multilocus, genus-wide approach to the phylogeny of mycobacteria using supertrees. International Journal of Systematic and Evolutionary Microbiology 58: 1432–1441.
[61]
Heller LC, Jones M, Widen RH (2008) Comparison of DNA Pyrosequencing with Alternative Methods for Identification of Mycobacteria. Journal of Clinical Microbiology. 46: 2092–2094.62.
[62]
The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214.
[63]
Conlan S, Kong HH, Segre JA (2012) Species-Level Analysis of DNA Sequence Data from the NIH Human Microbiome Project. PLoS ONE 7: e47075.